
USING BRAT-1.1.11

1 SYSTEM AND SPACE REQUIREMENTS

We fixed a bug in trim in version 1.1.11, added a new option for trim, namely option m, and added additional output

files for trim’s output to track original reads’ names and base quality scores.

In versions 1.1.8 and 1.1.9 we corrected some conditions that caused the programs to stop trying mapping reads. Now,

more reads can be mapped when using BS-mapping allowing for non-BS-mismatches.

In version 1.1.7, we offered users two new options to use with BRAT-large: P and S. Option S gives the users control

over the (space usage)-(mapping time) balance, and option P gives the users a choice of separating hashing of the

genome from mapping reads to the genome. If users map reads to the same genome and wish to re-use the same

hashing index, they now have a choice to pre-build the hashing index, save it on a hard disk and then re-use the index

for mapping different reads. Mapping with P is done in two steps: first run the program brat-large-build and then run

brat-large with P option.

BRAT stands for Bisulfite-treated Reads Analysis Tool. There are two versions of BRAT: BRAT and BRAT-large. Both

programs run on 64-bit architecture under Linux/Unix operating system. Both versions work with reads of lengths 24

bases and above.

BRAT accepts up to 4.2G references with total size of references up to 4.2G base pairs. BRAT-large can work with up to

4.2G references with the size of the largest reference up to 4.2G base pairs.

BRAT works best with relatively small genomes because it uses significantly more space than BRAT-large. BRAT is faster

than BRAT-large that maps reads to the references sequentially: it maps all reads to the first reference, then all reads to

the second reference and so on. The space requirement of BRAT-large depends on the size of the largest reference in the

set of input references, whereas BRAT’s space requirement depends on the total size of all input references (measured in

base pairs).

Let N be the total size of a genome in base pairs, T be the size of the largest reference in base pairs and R be the total

number of reads (each read is counted, i.e. a pair has 2 reads). Then the space required for both programs is bound as

follows:

SpaceBRAT = 269 ⋅ 106 + 2⋅4N + 24R + (3/8)N Bytes

SpaceBRAT-large = 269 ⋅ 106 + 4T + 24R + (3/8)T Bytes

SpaceBRAT-large = 269 ⋅ 106 + 2⋅4T + 24R + (3/8)T Bytes (when option S is provided)

Whenever there is a space limitation, the user can choose to use BRAT-large. Here is an example of space usage with

paired-end BS-mapping with non-BS-mismatches (mismatches other than T-to-C and A-to-G): BRAT uses 2.5 GB on 1

million pairs and human chromosome 1, and BRAT-large on 10 million pairs and an entire human genome uses 1.7 GB

(or 2.7GB with option S).

In this version, BRAT allows for non-BS-mismatches with the restriction on the number of non-BS-mismatches in the

first X bases (for BRAT) and X bases (for BRAT-large), where X is a threshold specified with the option f (X cannot be

smaller than 24 or larger than 64). BRAT guarantees to map all reads that could be mapped to the genome with up to

one non-BS-mismatch in the first X bases of reads. A user can specify any number of non-BS-mismatches with the

option m, and as long as there is only one non-BS-mismatch in the first X bases of a read, BRAT will map this read.

BRAT-large does not allow for non-BS-mismatches in the first X bases of reads. If a user specifies any number of non-

BS-mismatches with the option m, BRAT-large will map all reads that could be mapped perfectly or with BS-mismatches

within the first X bases, and any number of non-BS-mismatches in the other bases of reads.

The package includes three additional tools: trim, brat-large-build and acgt-count. The latter aligns mapped reads to the

genome and counts mapped nucleotides at each base for forward and reverse strands separately. The tool trim accepts

FASTQ files with reads/pairs as input, trims the ends of the reads whose base quality scores are lower than the user

specified threshold and trims Ns at the ends of the reads. The tool brat-large-build is used with option P with BRAT-large.

2 COMMANDS AND INPUT

To uncompress run:

tar zxvf brat-1.1.*.tar.gz

To build:

cd brat-1.1.*
make

This will create five executable programs: brat, brat-large, brat-large-build, acgt-count and trim.

Input format of the reads for BRAT and BRAT-large is raw reads, i.e. reads given one per line. To convert reads from

FASTQ format to raw reads, one should run trim. If a user does not wish to trim reads’ low quality score bases, then

he/she should omit the option for the base quality score threshold: the default threshold equals to zero, so all reads will

be in the output without change in lengths (except for reads having Ns at the ends). If reads have Ns at the ends, trim

trims Ns at the ends and outputs only those reads whose length after trimming is greater or equal to 24 bases.

A command to run trim

NEW in this version: we added option m to run with trim so that to allow internal Ns as long as the number of internal

Ns is less than or equal to the value provided with option m.

To trim single-end reads in the file reads.fastq in FASTQ format and output trimmed raw reads into a file with name

prefix_reads1.txt, run the command:

./trim -s reads.fastq -P prefix -q 20

This will trim bases whose base quality scores are lower than 20 Phred from the ends of reads: bases are trimmed one at

a time from both ends of a read until a base with quality score greater or equal than 20 is encountered. To learn more

about Phred scores, please visit http://www.phrap.com/phred/. Please note that if all reads have at least one N in each of

them, the output will be empty files. If this is the case, please use the following command:

./trim -s reads.fastq -P prefix -q 20 -m 2

This will allow each read having not more than 2 Ns (not at the end of reads, i.e. internal Ns).

If the user does not wish to trim ends with low base quality scores, the -q option is not specified. For single-end reads,

there is a single output file with trimmed reads.

To trim paired-end reads in the files reads1.fastq and reads2.fastq in FASTQ format, run the command:

./trim -1 reads1.fastq -2 reads2.fastq -P prefix -q 20

Here we assume, that reads1.fastq contains sequenced 5` mates, and reads2.fastq contains sequenced 3` mates.

The output will be in four files with raw reads: prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and

prefix_mates2.txt. To further map paired-end reads, use prefix_reads1.txt and prefix_reads2.txt as input files for paired-

end mapping with brat or brat-large. The file prefix_mates1.txt contains reads from the file reads1.fastq whose mates

have shorter length than 24 bases after trimming. Similarly, the file prefix_mates2.txt contains reads from the file

reads2.fastq whose mates are shorter than 24 bases. The user can further map these files, prefix_mates1.txt and

prefix_mates2.txt, as single-end reads: for BS-mapping of the reads in prefix_mates2.txt, the user must specify -A

option for mapping to work correctly (the same is true if a user wishes to map the reads in prefix_reads2.txt as single

reads).

Additional output files are prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq. These

files have the same reads as do files prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and prefix_mates2.txt

respectively, except the files prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq are in

FASTQ format. NOTE: current version of BRAT and BRAT-large do NOT support FASTQ format. These additional

files are for users to track original reads’ names and corresponding base quality scores.

Commands to run brat and brat-large

BRAT and BRAT-large map raw reads to references that have to be in FASTA format: one reference per FASTA file.

BRAT accepts a single file that contains names of FASTA files with the references. To map bisulfite single-end reads,

run either of the commands:

./brat -r references_names.txt -s prefix_reads1.txt -bs -o output_results.txt

./brat-large -r references_names.txt -s prefix_reads1.txt -bs -o output_results.txt

./brat -r references_names.txt -s prefix_reads2.txt -bs -o output_results.txt -A

./brat-large -r references_names.txt -s prefix_reads2.txt -bs -o output_results.txt -A

The file references_names.txt contains the names of the FASTA files with the references. The file output_results.txt

contains the results of the mapping: only uniquely mapped reads are in this file. The option -bs specifies that mapping

is for bisulfite sequenced reads. To map normal (not bisulfite-treated) reads, run similar commands but without -bs

option:

./brat -r references_names.txt -s prefix_reads1.txt -o output_results.txt

./brat-large -r references_names.txt -s prefix_reads1.txt -o output_results.txt

To map bisulfite paired-end reads, run either of the following commands:

./brat -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt

./brat-large -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt

The option -pe specifies paired-end mapping and as with single-end reads, -bs, specifies bisulfite mapping. The results

of the mapping will be in output_results.txt.

Commands Options:

-A specifies 3`mates (in our examples above, either of prefix_reads2.txt or prefix_mates2.txt files must be used with

this option). If the user does not specify this option, and provides either of the files, prefix_mates2.txt or

prefix_reads2.txt, as input reads for single-end mapping, the mapping will NOT be correct;

-u is used when a user wishes to output unmapped reads. The output will be in unm_prefix_reads1.txt file (assuming

prefix_reads1.txt was provided in the command line with option -s) for single reads and with paired-end reads in

unm_prefix_reads1.txt and unm_prefix_reads2.txt files (if prefix_reads1.txt and prefix_reads2.txt were used with the

options -1 and -2 in the corresponding command line). Unmapped reads in the output files are in raw reads format: one

per line, there are no ambiguous reads/pairs in the files with unmapped reads;

-s <single-end reads file>: to specify the file with input reads for single-end reads mapping;

-1 <paired-end reads file>: to specify the file with 5` mates for paired-end reads mapping (in our example,

prefix_reads1.txt);

-2 <paired-end reads file>: to specify the file with 3` mates for paired-end reads mapping (in our example above,

prefix_reads2.txt);

-pe to specify paired-end reads mapping (default is false, i.e. single-end mapping);

-bs to specify bisulfite sequenced reads mapping. Without this option, mapping will be done as for normal, not

bisulfite-treated, sequenced reads;

-i <positive integer>: to specify minimum insert size for paired-end mapping, the minimum distance allowed between

the leftmost ends of the mapped mates on forward strand (default is 100);

-a <positive integer>: to specify maximum insert size for paired-end mapping, the maximum distance allowed between

the leftmost ends of the mapped mates on forward strand (default is 300);

-o <string>: to specify the file with the results of mapping;

-M is used when a user wishes to output ambiguous reads. The output will be in amb_prefix_reads1.txt for single reads

and in amb_prefix_reads1.txt and amb_prefix_reads2.txt files with paired-end reads: raw reads one per line. This

option does not output the mapping locations for ambiguous reads, but just the reads themselves;

-m <integer>: the maximum number of non-BS-mismatches allowed by a user (default is 0).

-f <integer>: the number of the first bases of a read, where the restriction on the number of non-BS-mismatches

applies: for BRAT, only on non-BS-mismatch is allowed in the first <integer> bases, and for BRAT-large NO non-BS-

mismatches are allowed in the first <integer> bases (for BRAT, default is 36, and for BRAT-large, default is 24).

-S to specify speed mode for BRAT-large. Space usage with this option doubles, but running time is about three times

faster.

-P <directory name> To use this option that allows to separate hashing of the genome from mapping of reads, one has

to create a directory, some_directory (the name of a directory in the example below), and to run the following

commands (1) to build a hashing index and 2) to map reads

./brat-large-build -r references_names.txt -P some_directory [options: S, bs, f]

./brat-large -P some_directory -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -o output_results.txt [options]

The tool brat-large-build will output hashing index of the references into some_directory. For human genome, space on

hard disk for hashing index is 15GB (and 26GB when option S is used). The command for tool brat-large with option P

differs only by not specifying option r. If option bs was passed to brat-large-build, then this option must be passed to

brat-large. In other words, for mapping normal and bisulfite-treated reads, two different hashing indices must be built.

The same true when option S is used: if a user wishes to use this option and P option, then S must be used with brat-

large-build. When P is used, during mapping option f will have the same value that was set with brat-large-build. If a

user does not specify this option, the default value, 24, will be used. If a user wishes to speed up mapping time, and to

use option P, then the user could set option f to a higher value with brat-large-build.

General rule for using option P: if a user wishes to change either of the parameters: f, S or bs; the user must apply the

same parameters with brat-large-build. Default options fr brat-large-build are f = 24, S is not set (i.e. preference is given

to slower mapping, but also smaller space usage), and normal mapping (i.e. bs is not set).

A command to run acgt-count

To count mapped As, Cs, Gs and Ts at each base of forward and reverse strands of the references, use acgt-count.

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt

the file references_names.txt contains the names of FASTA files with the references, which are needed to calculate the

sizes of the references. The output will be in two files per a reference: prefix_forw_aReference_name and

prefix_rev_aReference_name. The option -p is to specify the results of paired-end mapping (if any), and -s is to specify

the results of single-end mapping (if any). NOTE: the file pairs_results.txt does not contain the actual results, it

contains the names of the files with the results for paired-end mapping, and similarly, single_results.txt file

contains the names of the files with the actual results for single-end mapping. At least one of these options must be

provided. The files whose names are listed in the files pairs_results.txt and single_results.txt must be in BRAT’s output

format.

To make this point clear, assume, a user ran brat on paired-end reads and has the output file with the results in

output_pairs_results.txt; to run acgt-count, the user must store the name of this file in pairs_results.txt file and run

acgt_count using pairs_results.txt (i.e. pairs_results.txt will have in this case one line, namely,

output_pairs_results.txt). The command for this example is:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt

3 OUTPUT FORMAT

Output format for brat and brat-large for single-end mapping

• Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;

• Read 1 < string >: the read given as in the input file (prefix_reads1.txt);

• Reference name < string >: a name of a reference to which the read is mapped (the first word following “>”

in a FASTA file);

• Strand “+” if the read is mapped to forward strand, and “-“ if the read is mapped to reverse strand;

• Position < integer >: position within the reference starting with 0, where the read is mapped (the leftmost

position on forward strand).

• The number of non-BS-mismatches <int>

Output format for brat and brat-large for paired-end mapping

• Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;

• Read 1 < string >: the first mate of a pair given as in the input file (prefix_reads1.txt);

• Read 2 < string >: the second mate of a pair given as in the input file (prefix_reads2.txt);

• Reference name < string >: a name of the reference to which the pair is mapped (the first word following “>”

in a FASTA file);

• Strand “+” if 5` mate (from prefix_reads1.txt) is mapped to forward strand (consecutively, 3` mate, from

prefix_reads2.txt, is mapped to reverse strand), and “-“ if the 5` mate is mapped to reverse strand (and 3`

mate to forward strand);

• Position 1 < integer >: position within the reference starting with 0, where 5` mate is mapped (the leftmost

position on forward strand);

• Position 2 < integer >: position within the reference starting with 0, where 3` mate is mapped (the leftmost

position on forward strand).

• The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 5` mate

• The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 3` mate

Output format for acgt-count

The number of output files will be double the number of input references: two for each reference listed in

references_names.txt file (one file for forward strand and the other for reverse strand). In each file, there are M lines,

where M is the size of a corresponding reference in base pairs. Each line corresponds to a base of a strand and contains

counts for As, Cs, Gs and Ts at that base for all mapped reads (i.e. there are four integers per line: from left to right for

As, Cs, Gs and Ts).

For the reverse strand, the counts of As, Cs, Gs and Ts are given for the reads that are mapped to the reverse strand, but

the counts are obtained by aligning the reverse-complements of these reads with the forward strand.

Following is an example to illustrate this point.

Let a read ACCGTT be mapped to a reverse strand at position i, then the corresponding forward strand starting at

position i is AACGGT, and the counts for the reverse strand at positions i …i+5 from this read are incremented for the

following nucleotides: i(A), i+1(A), i+2(C), i+3(G), i+4(G) and i+5(T).

Output format for trim.

The tool trim accepts FASTQ files with reads/pairs as input, trims the ends of the reads whose base quality scores are

lower than the user specified threshold or whose ends are Ns. The output for single reads is a single file with reads

whose lengths might be different and whose lengths are greater than or equal to 24 bases. The output for pairs is four

files: two for paired-end mapping, and two for single-end mapping. Trimming of paired-end reads produces two files

with single reads: if one mate is shorter than the minimum length allowed, and the other’s length is correct, then the

mate with the correct length will be output into a corresponding file with single reads. Two files for single reads are

necessary because BS-mapping for 5` and 3` mates is different. Each file contains a single read per line (raw reads

format).

