
USING BRAT-1.1.20

1 UPDATES

In version 1.1.20, we slightly changed the output format for acgt-count with option -B. Please see Output format for
ACGT-count. In addition, we made changes to User Manual, section How to use BRAT with reads sequenced from four
strands. Please notice: BRAT counts correctly ACGT for the case when two original strands are sequenced, but for the case
when four PCR-product strands are sequenced, there might be a bias in counting ACGT for unmethylated cytocines.

In version 1.1.19, we fixed a bug that caused segmentation fault on some reads; we fixed a bug in acgt-count that caused
incorrect output when using new option -B with this program; we fixed a bug in acgt-count that could cause incorrect
ACGT-count when reads come from four strands of PCR-product (the bug did not affect the results if reads come from the
original genomic strands).

In version 1.1.18, we fixed a bug that caused segment fault when running brat-large on the built index using brat-large-
build. We made changes to User manual Section How to use BRAT with reads sequenced from four strands.

In version 1.1.17, we fixed a bug in acgt-count: in the previous versions it had only option -s to accept the file with names
of the files with mapping results of single-end reads; however, for paired-end reads, if users choose to map files with mates
2 as single-end reads, ACGT-distribution has to be counted differently than for mates 1 (please refer to section 5 for
details). Hence, we added two new options to use with acgt-count (please see how to use ACGT-count) to distinguish
between the two types of single-end reads (mates1 and mates 2 of paired-end reads). In addition, we added an additional
option -B to use with acgt-count: with this option users will have only two output files in the different format than before
(please refer to the section Output format for ACGT-count). Finally, we changed the output of check-strands. Now, instead
of ACGT-counts it outputs the ratios: A/(A+C+G+T), C/(A+C+G+T), G/(A+C+G+T) and T/(A+C+G+T).

In version 1.1.16, we added additional capability to BRAT: now it will map reads sequenced from four PCR-product
strands. Please read details in Section 4, Details on ACGT-count, of User Manual.

In version 1.1.15, we fixed a bug in acgt-count and included two new tools: rev-compl and check-strands.
Recently, we received e-mails from the users whose questions made us re-think the way we count ACGT-
distribution of mapped reads for positive and negative strands. Please read a full account of these changes in
section 5 “Details on ACGT-count” of the User Manual. Some users believe that the sequenced reads are

produced by sequencing all four strands (two bisulfite-treated original genomic strands and their reverse-complements
resulted from PCR for library amplification). In section 5, we describe how to use BRAT to check whether the reads are
sequenced from two original strands as templates or from four PCR-product strands as templates for sequencing. Finally,
we provide instructions on using BRAT in the case when the reads are sequenced from four strands as templates.

In version 1.1.14, we fixed a bug in tool acgt-count. If minimum insert size (option i) is set to be smaller than the minimum
read length (in the set of input reads), then for paired-end mapping two mates could overlap each other. In previous
versions, (A,C,G,T) count in the overlapping regions included nucleotide coverage from both mates. In this new version,
nucleotide coverage in the overlapping region is counted only from one mate of a pair.

In version 1.1.13, we fixed bugs in acgt-count and brat-large-build (correspondingly, brat-large has been changed too).
Please refer to Commands Options about how to use the option -P <directory name> with brat-large and brat-large-build.

In version 1.1.12, we added a new option, L, to use with trim to allow different base quality score types such as Phred or
Solexa/Illumina.

We fixed a bug in trim in version 1.1.11, added a new option for trim, namely option m, and added additional output files
for trim’s output to track original reads’ names and base quality scores.

In versions 1.1.8 and 1.1.9 we corrected some conditions that caused the programs to stop trying mapping reads. Now,
more reads can be mapped when using BS-mapping allowing for non-BS-mismatches.

In version 1.1.7, we offered users two new options to use with BRAT-large: P and S. Option S gives the users control over
the (space usage)-(mapping time) balance, and option P gives the users a choice of separating hashing of the genome from
mapping reads to the genome. If users map reads to the same genome and wish to re-use the same hashing index, they now

have a choice to pre-build the hashing index, save it on a hard disk and then re-use the index for mapping different reads.
Mapping with P is done in two steps: first run the program brat-large-build and then run brat-large with P option.

2 SYSTEM AND SPACE REQUIREMENTS

BRAT stands for Bisulfite-treated Reads Analysis Tool. There are two versions of BRAT: BRAT and BRAT-large. Both
programs run on 64-bit architecture under Linux/Unix operating system. Both versions work with reads of lengths 24 bases
and above.

BRAT accepts up to 4.2G references with total size of references up to 4.2G base pairs. BRAT-large can work with up to 4.2G
references with the size of the largest reference up to 4.2G base pairs.

BRAT works best with relatively small genomes because it uses significantly more space than BRAT-large. BRAT is faster
than BRAT-large that maps reads to the references sequentially: it maps all reads to the first reference, then all reads to the
second reference and so on. The space requirement of BRAT-large depends on the size of the largest reference in the set of
input references, whereas BRAT’s space requirement depends on the total size of all input references (measured in base
pairs).

Let N be the total size of a genome in base pairs, T be the size of the largest reference in base pairs and R be the total
number of reads (each read is counted, i.e. a pair has 2 reads). Then the space required for both programs is bound as
follows:

SpaceBRAT = 269 ⋅ 106 + 2⋅4N + 24R + (3/8)N Bytes
SpaceBRAT-large = 269 ⋅ 106 + 4T + 24R + (3/8)T Bytes
SpaceBRAT-large = 269 ⋅ 106 + 2⋅4T + 24R + (3/8)T Bytes (when option S is provided)

Whenever there is a space limitation, the user can choose to use BRAT-large. Here is an example of space usage with paired-
end BS-mapping with non-BS-mismatches (mismatches other than T-to-C and A-to-G): BRAT uses 2.5 GB on 1 million
pairs and human chromosome 1, and BRAT-large on 10 million pairs and an entire human genome uses 1.7 GB (or 2.7GB
with option S).

In this version, BRAT allows for non-BS-mismatches with the restriction on the number of non-BS-mismatches in the first
X bases (for BRAT) and X bases (for BRAT-large), where X is a threshold specified with the option f (X cannot be smaller
than 24 or larger than 64). BRAT guarantees to map all reads that could be mapped to the genome with up to one non-BS-
mismatch in the first X bases of reads. A user can specify any number of non-BS-mismatches with the option m, and as
long as there is only one non-BS-mismatch in the first X bases of a read, BRAT will map this read. BRAT-large does not
allow for non-BS-mismatches in the first X bases of reads. If a user specifies any number of non-BS-mismatches with the
option m, BRAT-large will map all reads that could be mapped perfectly or with BS-mismatches within the first X bases, and
any number of non-BS-mismatches in the other bases of reads.

The package includes three additional tools: trim, brat-large-build and acgt-count. The latter aligns mapped reads to the
genome and counts mapped nucleotides at each base for forward and reverse strands separately. The tool trim accepts
FASTQ files with reads/pairs as input, trims the ends of the reads whose base quality scores are lower than the user
specified threshold and trims Ns at the ends of the reads. The tool brat-large-build is used with option P with BRAT-large.

3 COMMANDS AND INPUT

To uncompress run:

tar zxvf brat-1.1.*.tar.gz

To build:

cd brat-1.1.*
make

This will create five executable programs: brat, brat-large, brat-large-build, acgt-count and trim.

Input format of the reads for BRAT and BRAT-large is raw reads, i.e. reads given one per line. To convert reads from
FASTQ format to raw reads, one should run trim. If a user does not wish to trim reads’ low quality score bases, then he/she

should omit the option for the base quality score threshold: the default threshold equals to zero, so all reads will be in the
output without change in lengths (except for reads having Ns at the ends). If reads have Ns at the ends, trim trims Ns at the
ends and outputs only those reads whose length after trimming is greater or equal to 24 bases.

A command to run trim
NEW in this version: we added option m to run with trim so that to allow internal Ns as long as the number of internal Ns is
less than or equal to the value provided with option m.

To trim single-end reads in the file reads.fastq in FASTQ format and output trimmed raw reads into a file with name
prefix_reads1.txt, run the command:

./trim -s reads.fastq -P prefix -q 20 –L 64

This will trim bases whose base quality scores are lower than 20 from the ends of reads: bases are trimmed one at a time
from both ends of a read until a base with quality score greater or equal than 20 is encountered. The option L specifies the
smallest value of the range of base quality scores in ASCII representation (please see Commands Options for details). To
learn more about Phred scores, please visit http://www.phrap.com/phred/. Please note that if all reads have at least one N in
each of them, the output will be empty files. If this is the case, please use the following command:

./trim -s reads.fastq -P prefix -q 20 -m 2

This will allow each read having not more than 2 Ns (not at the end of reads, i.e. internal Ns).

If the user does not wish to trim ends with low base quality scores, the -q option is not specified. For single-end reads, there
is a single output file with trimmed reads.

To trim paired-end reads in the files reads1.fastq and reads2.fastq in FASTQ format, run the command:

./trim -1 reads1.fastq -2 reads2.fastq -P prefix -q 20

Here we assume, that reads1.fastq contains sequenced 5` mates, and reads2.fastq contains sequenced 3` mates.

The output will be in four files with raw reads: prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and
prefix_mates2.txt. To further map paired-end reads, use prefix_reads1.txt and prefix_reads2.txt as input files for paired-end
mapping with brat or brat-large. The file prefix_mates1.txt contains reads from the file reads1.fastq whose mates have
shorter length than 24 bases after trimming. Similarly, the file prefix_mates2.txt contains reads from the file reads2.fastq
whose mates are shorter than 24 bases. The user can further map these files, prefix_mates1.txt and prefix_mates2.txt, as
single-end reads: for BS-mapping of the reads in prefix_mates2.txt, the user must specify -A option for mapping to work
correctly (the same is true if a user wishes to map the reads in prefix_reads2.txt as single reads).

Additional output files are prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq. These files
have the same reads as do files prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and prefix_mates2.txt respectively,
except the files prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq are in FASTQ format.
NOTE: current version of BRAT and BRAT-large do NOT support FASTQ format. These additional files are for users to
track original reads’ names and corresponding base quality scores.

Commands to run brat and brat-large
BRAT and BRAT-large map raw reads to references that have to be in FASTA format: one reference per FASTA file. BRAT
accepts a single file that contains names of FASTA files with the references. To map bisulfite single-end reads, run either
of the commands:

./brat -r references_names.txt -s prefix_reads1.txt -bs -o output_results.txt

./brat-large -r references_names.txt -s prefix_reads1.txt -bs -o output_results.txt

./brat -r references_names.txt -s prefix_reads2.txt -bs -o output_results.txt -A

./brat-large -r references_names.txt -s prefix_reads2.txt -bs -o output_results.txt -A

The file references_names.txt contains the names of the FASTA files with the references. The file output_results.txt
contains the results of the mapping: only uniquely mapped reads are in this file. The option -bs specifies that mapping is for
bisulfite sequenced reads. To map normal (not bisulfite-treated) reads, run similar commands but without -bs option:

./brat -r references_names.txt -s prefix_reads1.txt -o output_results.txt

./brat-large -r references_names.txt -s prefix_reads1.txt -o output_results.txt
To map bisulfite paired-end reads, run either of the following commands:

./brat -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt

./brat-large -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt

The option -pe specifies paired-end mapping and as with single-end reads, -bs, specifies bisulfite mapping. The results of
the mapping will be in output_results.txt.

Commands Options:
-A specifies 3`mates (in our examples above, either of prefix_reads2.txt or prefix_mates2.txt files must be used with this
option). If the user does not specify this option, and provides either of the files, prefix_mates2.txt or prefix_reads2.txt, as
input reads for single-end mapping, the mapping will NOT be correct;
-u is used when a user wishes to output unmapped reads. The output will be in unm_prefix_reads1.txt file (assuming
prefix_reads1.txt was provided in the command line with option -s) for single reads and with paired-end reads in
unm_prefix_reads1.txt and unm_prefix_reads2.txt files (if prefix_reads1.txt and prefix_reads2.txt were used with the
options -1 and -2 in the corresponding command line). Unmapped reads in the output files are in raw reads format: one per
line, there are no ambiguous reads/pairs in the files with unmapped reads;
-s <single-end reads file>: to specify the file with input reads for single-end reads mapping;
-1 <paired-end reads file>: to specify the file with 5` mates for paired-end reads mapping (in our example,
prefix_reads1.txt). This option is also used with acgt-count;
-2 <paired-end reads file>: to specify the file with 3` mates for paired-end reads mapping (in our example above,
prefix_reads2.txt); This option is also used with acgt-count;
-pe to specify paired-end reads mapping (default is false, i.e. single-end mapping);
-bs to specify bisulfite sequenced reads mapping. Without this option, mapping will be done as for normal, not bisulfite-
treated, sequenced reads;
-i <positive integer>: to specify minimum insert size for paired-end mapping, the minimum distance allowed between the
leftmost ends of the mapped mates on forward strand (default is 100);
-a <positive integer>: to specify maximum insert size for paired-end mapping, the maximum distance allowed between the
leftmost ends of the mapped mates on forward strand (default is 300);
-o <string>: to specify the file with the results of mapping;
-M is used when a user wishes to output ambiguous reads. The output will be in amb_prefix_reads1.txt for single reads and
in amb_prefix_reads1.txt and amb_prefix_reads2.txt files with paired-end reads: raw reads one per line. This option does
not output the mapping locations for ambiguous reads, but just the reads themselves;
-m <integer>: the maximum number of non-BS-mismatches allowed by a user (default is 0).
-f <integer>: the number of the first bases of a read, where the restriction on the number of non-BS-mismatches applies: for
BRAT, only one non-BS-mismatch is allowed in the first <integer> bases, and for BRAT-large NO non-BS-mismatches are
allowed in the first <integer> bases (for BRAT, default is 36, and for BRAT-large, default is 24).
-S to specify speed mode for BRAT-large. Space usage with this option doubles, but running time is about three times faster.
-P <directory name> To use this option that allows to separate hashing of the genome from mapping of reads, one has to
create a directory, some_directory (the name of a directory in the example below), and to run the following commands (1)
to build a hashing index and 2) to map reads.

./brat-large-build -r references_names.txt -P some_directory [options: S, bs, f]

./brat-large -P some_directory -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -o output_results.txt [options]

If the directory some_directory is the directory inside the directory in which you run the commands above, then providing
the name, some_directory, is sufficient. However, if you run these commands in the directory that does not have
some_directory in it, then please provide a full path to some_directory.
The tool brat-large-build will output hashing index of the references into some_directory. For human genome, space on
hard disk for hashing index is 15GB (and 26GB when option S is used). The command for tool brat-large with option P
differs only by not specifying option r. If option bs was passed to brat-large-build, then this option must be passed to brat-

large. In other words, for mapping normal and bisulfite-treated reads, two different hashing indices must be built. The same
true when option S is used: if a user wishes to use this option and P option, then S must be used with brat-large-build. When
P is used, during mapping option f will have the same value that was set with brat-large-build. If a user does not specify this
option, the default value, 24, will be used. If a user wishes to speed up mapping time, and to use option P, then the user
could set option f to a higher value with brat-large-build.
General rule for using option P: if a user wishes to change either of the parameters: f, S or bs; the user must apply the
same parameters with brat-large-build. Default options fr brat-large-build are f = 24, S is not set (i.e. preference is given to
slower mapping, but also smaller space usage), and normal mapping (i.e. bs is not set).

-L <integer>: the smallest value of the range of base quality scores in ASCII representation (default is 33).

The table below gives examples of different quality scores and their range in ASCII representation (from Wikipedia). The
option L uses the values in the “Smallest Value in ASCII representation” column.

Type Smallest Score Largest Score Smallest Value in

ASCII representation
Largest Value in
ASCII representation

Phred quality score
(Sanger format)

0 93 33 126

Solexa/Illumina, 1.0 -5 62 59 126
Soloexa/Illumina,
1.3+

0 62 64 126

-B: specifies the second option for output with acgt-count (please read Output format for acgt-count).

A command to run acgt-count
To count mapped As, Cs, Gs and Ts at each base of forward and reverse strands of the references, use acgt-count.

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt

the file references_names.txt contains the names of FASTA files with the references, which are needed to calculate the
sizes of the references. The output will be in two files per a reference: prefix_forw_aReference_name and
prefix_rev_aReference_name. The option -p is to specify the results of paired-end mapping (if any), and -s is to specify the
results of single-end mapping (if any). NOTE: the file pairs_results.txt does not contain the actual results, it contains
the names of the files with the results for paired-end mapping, and similarly, single_results.txt file contains the
names of the files with the actual results for single-end mapping. At least one of these options must be provided. The
files whose names are listed in the files pairs_results.txt and single_results.txt must be in BRAT’s output format.

To make this point clear, assume, a user ran brat on paired-end reads and has the output file with the results in
output_pairs_results.txt; to run acgt-count, the user must store the name of this file in pairs_results.txt file and run
acgt_count using pairs_results.txt (i.e. pairs_results.txt will have in this case one line, namely, output_pairs_results.txt).
The command for this example is:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt

Please note that if a user has paired-end reads (files with mates 1 and mates 2) and wishes to map the mates as single-end
reads, then the user must provide names of the files with results for mates 1 and mates 2 separately using options -1 and -2:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -1 single_results_mates1.txt -2 single_results_mates2.txt

4 OUTPUT FORMAT

Output format for brat and brat-large for single-end mapping
• Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;
• Read 1 < string >: the read given as in the input file (prefix_reads1.txt);
• Reference name < string >: a name of a reference to which the read is mapped (the first word following “>” in a

FASTA file);
• Strand “+” if the read is mapped to forward strand, and “-“ if the read is mapped to reverse strand;
• Position < integer >: position within the reference starting with 0, where the read is mapped (the leftmost position

on forward strand).

• The number of non-BS-mismatches <int>

Output format for brat and brat-large for paired-end mapping
• Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;
• Read 1 < string >: the first mate of a pair given as in the input file (prefix_reads1.txt);
• Read 2 < string >: the second mate of a pair given as in the input file (prefix_reads2.txt);
• Reference name < string >: a name of the reference to which the pair is mapped (the first word following “>” in a

FASTA file);
• Strand “+” if 5` mate (from prefix_reads1.txt) is mapped to forward strand (consecutively, 3` mate, from

prefix_reads2.txt, is mapped to reverse strand), and “-“ if the 5` mate is mapped to reverse strand (and 3` mate to
forward strand);

• Position 1 < integer >: position within the reference starting with 0, where 5` mate is mapped (the leftmost
position on forward strand);

• Position 2 < integer >: position within the reference starting with 0, where 3` mate is mapped (the leftmost
position on forward strand).

• The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 5` mate
• The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 3` mate

Output format for acgt-count
Starting with version brat-1.1.17, there are two choices for output format.

The first choice: The number of output files will be double the number of input references: two for each reference listed in
references_names.txt file (one file for forward strand and the other for reverse strand). In each file, there are M lines, where
M is the size of a corresponding reference in base pairs. Each line corresponds to a base of a strand and contains counts for
As, Cs, Gs and Ts at that base for all mapped reads (i.e. there are four integers per line: from left to right for As, Cs, Gs and
Ts).

For the reverse strand, the counts of As, Cs, Gs and Ts are given for the reads that are mapped to the reverse strand, but the
counts are obtained by aligning the reverse-complements of these reads with the forward strand.

Following is an example to illustrate this point.
Let a read ACCGTT be mapped to a reverse strand at position i, then the corresponding forward strand starting at position i
is AACGGT, and the counts for the reverse strand at positions i …i+5 from this read are incremented for the following
nucleotides: i(A), i+1(A), i+2(C), i+3(G), i+4(G) and i+5(T).

The second choice: If a user provides option -B:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt -B

then the output is in two files: one file for positive strand and another for negative strand (output files will contain words
“forw” and “rev” to distinguish between strands). Each line in the output corresponds to a base in the genome that is either
a cytocine on positive strand or cytocine on negative strand (given in separate files). Output format:

chrom, start, end, total, methylation_level, strand

where chrom is the reference name, start and end are positions in the genome (Note: base count in a reference starts with
0), total takes one of the values: CHH:X, CHG:X or CpG:X, where X is the sum of counts of Cs and Ts mapped to this
base, methylation level is calculated as the number of Cs over the total (methylation level = count_C/(count_C +
count_T)). CHH, CHG and CpG describe the sequence content following C: if two consecutive bases that follow C are not
G, then total = CHH:X; if the first consecutive base following C is non-G and the second consecutive is G, then total =
CHG:X; and finally, if G follows C (we have CG di-nucleotide), then total = CpG:X.

Output format for trim.
The tool trim accepts FASTQ files with reads/pairs as input, trims the ends of the reads whose base quality scores are lower
than the user specified threshold or whose ends are Ns. The output for single reads is a single file with reads whose lengths
might be different and whose lengths are greater than or equal to 24 bases. The output for pairs is four files: two for paired-
end mapping, and two for single-end mapping. Trimming of paired-end reads produces two files with single reads: if one
mate is shorter than the minimum length allowed, and the other’s length is correct, then the mate with the correct length

will be output into a corresponding file with single reads. Two files for single reads are necessary because BS-mapping for
5` and 3` mates is different. Each file contains a single read per line (raw reads format).

5 DETAILS ON ACGT-COUNT

Let us denote a mapping of a base in a read to a base in the reference as C→C, T→C, A→G, G→G. Initially, we thought
that if a read maps to a positive strand, then the mappings C→C and T→C contribute to the count of methylation level of
cytocines of the positive strand. Similarly, if the reverse-complement of a read maps to the positive strand (equivalently, a
read maps to the negative strand), then the mappings A→G and G→G contribute to the count of methylation level of
cytocines of the negative strand. Let us illustrate this idea in Figures 1-3 below.

Figure 1. After the special adapters with methylated cytokines are ligated to DNA fragments, sodium bisulfite treatment
(BS-treatment) is applied to DNA fragments, after which unmethylated cytocines are converted to uracils and later to
thymines during PCR for library amplification. Note, that after BS-treatment, there are four distinct PCR-product strands:
PCR1+ and PCR2- (correspond to original genomic strands) and PCR1- and PCR2+ (the reverse-complements of PCR1+
and PCR2- respectively). Note, that PCR1+ and PCR2- are T-rich and C-depleted (since unmethylated cytocines converted
to thymines), and PCR1- and PCR2+ are A-rich and G-depleted (as the reverse-complements of PCR1+ and PCR2-
respectively).

Figure 2. Here we show the sequenced pairs resulted from sequencing all four PCR-product strands, each of which serves
as a template during sequencing. If PCR1+ is attached to the flow cell, then in single-end sequencing, 5’-end of this strand
is sequenced; in paired-end sequencing, 5’-end of PCR1+ is sequenced, then PCR1+ is copied into its reverse-complement
PCR1- and 5’-end of PCR1- is sequenced as the second mate of a pair. Similarly, sequencing produces reads for the rest of
strands. If procedure has some technical details that ensure that only original genomic strands serve as templates for
sequencing, then even though we have four PCR-product strands, we’ll have reads sequenced only from PCR1+ and
PCR2- with mates ordering shown above (in paired-end sequencing, the left column of reads are mates 1 will have reads
IDs end with “1” and will be in one file, the right column of reads are mates 2 will have reads IDs end with “2” and will be
in the other file of Illumina’s sequenced reads).

CGA TA GCT TGT GAT5' 3'
PCR1

+

CG AA CTA 5'3'

CC GTT AT GG GA TTA 5'3'
PCR2

-

TA AA GCC 3'5'

sequenced pairs

 AATCTGG CACTAAG

TGCTAAG AACCTAG

CC GCT AT GA AA CTA 5'3'
PCR1

-

TA GA GCT 3'5'

CAA A GCC CGT AAT5' 3'
PCR2

+

T

CG GA TTA 5'3'

PCR1
+

PCR2
-

CACTAAG AATCTGGPCR1
-

PCR2
+ AACCTAG TGCTAAG

Figure 3. Here, we show mapping of the pairs sequenced from all four strands. The bottom strand shows positive strand of
the reference with methylated cytocine shown in blue and methylated cytocine on negative strand shown as G in orange.
This figure demonstrates that if we use simplified approach of counting methylated level of cytocines from positive and
negative strands, then we introduce a bias in counting methylation level of unmethylated cytocines (either cytocines that
are partially methylated across cells of a sample or completely unmethylated). For example, read 2 (mate 2) from PCR1+
maps to negative strand (its reverse-complement maps to positive strand), and therefore, initially we contributed ACGT-
counts from this read toward negative strand. This was incorrect: in this Figure, bias is introduced by counting G from this
read (in red circle) toward unmethylated G (i.e. unmethylated cytocine on negative strand). The count of another G from
this read (in green circle) toward methylated G did not introduce a bias (since methylated G has only Gs mapped to it), but
the coverage of methylated Gs is also not what it would have been were we using the correct counting. Similar bias is
introduced when counting contribution of ACGT from mates 2 from PCR2+.

From Figures 1-3, we can observe that mate 2 of PCR1+ strand is reverse-complement 3’-end of PCR1+; thus, mate 2 must
reflect methylation on positive strand rather than on negative strand. For example, methylated C on PCR1+ will be G on
PCR1-, and unmethylated C (which is T) on PCR1+ will be A on PCR1-. Thus, T→C and C→C, where T and C
respectively belong to PCR1-, must contribute to the count of methylation level of cytocines on positive strand. Similarly,

A→G and G→G (with A and G belonging to PCR2+) must contribute to the count of methylation level of cytocines on
negative strand.

These changes have been made to acgt-count and now ACGT-counting from second mates of pairs sequenced from PCR1+
and PCR2- is done without bias, which is demonstrated in Figure 4.

Figure 4. If mate 1 of a pair maps to positive strand (case of a pair sequenced from PCR1+), then we increment ACGT-
count from both mates for positive strand, and methylation level of a cytocine on the positive strand can be measured as
total Cs mapped to positive strand to the sum of total Cs and total Ts mapped to the positive strand. If mate 1 of a pair
maps to negative strand (case of a pair sequenced from PCR2-), then we increment ACGT-count from both mates for
negative strand. Methylation level can be determined for each G on positive strand of the reference (G on positive strand
corresponds to C on negative strand) by looking into acgt-count output for negative strand and taking the ratio of total Gs
mapped to this position and the sum of total Gs and As mapped to this position.

We received a couple of e-mails concerned that the sequenced reads must be products of sequencing of all four strands.
The best way to be sure how many strands have been sequenced is talking to Illumina tech support, but there is also a quick
and dirty method to answer this question. This approach will work best with genomes whose ACGT-distribution is close to
uniform, or with genomes that CG-rich. We cannot be positive that the way we will explain shortly can be successfully
applied to AT-rich genomes. We added a new tool, check-strands, that calculates ACGT-distribution in the genome, and in
mates 1 and mates 2 of paired-end reads. For the case, when pairs are sequenced only from two original genomic strands,
you should notice significant increase of Ts in mates 1 (and decrease of Cs) compared to Ts and Cs in the genome, and
significant increase of As in mates 2 (and consequently decrease of Gs) compared to As and Gs in the genome. If four
strands are sequenced, then the file with mates 1 contains a mixture of reads sequenced from original genomic strands as
well as their reverse-complements. Thus, the increase of both As and Ts (and decrease of counts of Cs and Gs) should be
observed in both files: with mates 1 and mates2. This conclusion is derived from the fact that after BS-treatment original

genomic strands are T-rich and C-depleted, and consequently their reverse-complements PCR1- and PCR2+ are A-rich and
G-depleted.

Below are the commands to run check-strands:

Single-end reads:

./check-strands -r references_names.txt -s reads1.fastq -o output_results.txt

Paired-end reads:

./check-strands -r references_names.txt -1 reads1.fastq -2 reads2.fastq -o output_results.txt

Here, reference_names.txt as before: it is the file with names of files in FASTA with references; reads1.fastq and
reads2.fastq are FASTQ files from Illumina with sequenced reads (for paired-end reads, with mates 1 and mates 2). The
output is in output_results.txt; it is self-explanatory with proportions of A, C, G and T (in that order) in references, in reads
from reads1.fastq and in reads from reads2.fastq.

How to use BRAT with reads sequenced from four strands.
For single-end reads, if reads are sequenced from four PCR-product strands, namely PCR1+, PCR2-, PCR1- and PCR2+,
then run BRAT as explained before with option -u that will output unmapped reads into a separate file, say unmapped.txt.
Then use our new tool rev-compl with unmapped.txt as follows:

./rev-compl -s unmapped.txt -o rev_compl_of_unmapped.txt

The output file rev_compl_of_unmapped.txt will contain reverse-complement of reads from unmapped.txt file.
Then map reads from rev_compl_of_unmapped.txt as usual (see how to map single-end reads with BRAT).

For paired-end reads, map reads as usual, but use -u option to output unmapped reads (use appropriate command of these
two):

./brat -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt -u
./brat-large -r references_names.txt -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -bs -o output_results.txt –u

The unmapped reads from prefix_reads1.txt will be in unm_prefix_reads1.txt and unmapped reads from prefix_reads2.txt
will be in unm_prefix_reads2.txt.

Then take reverse-complements of unmapped reads:

./rev-compl -s unm_prefix_reads1.txt -o rc_unm_prefix_reads1.txt
./rev-compl -s unm_prefix_reads2.txt -o rc_unm_prefix_reads2.txt

Then run BRAT again on reverse-complements of unmapped reads and use option A (use either of the commands below):

./brat -r references_names.txt -1 rc_unm_prefix_reads1.txt -2 rc_unm_prefix_reads2.txt -o output_results2.txt -A
./brat-large -r references_names.txt -1 rc_unm_prefix_reads1.txt -2 rc_unm_prefix_reads2.txt -o output_results2.txt –A

The rest of the tools are used as before.

Why does this work? BRAT allows only T-C BS-mismatches if mate 1 maps to positive strand, and only A-G BS-
mismatches if reverse-complement of mate 1 maps to positive strand. Thus, when we first time map paired-end reads, only
pairs sequenced from the original strands are mapped; after we take reverse-complement, then mapping is done for the
pairs sequenced from PCR1- and PCR2+. However, if a read does not have BS-mismatches or the number of inappropriate
BS-mismatches (A-G in case when mate 1 maps to positive strand and T-C when reverse-complemet of mate 1 maps to
positive strand) is less than the total of allowed non-BS-mismatches, then some of the pairs from PCR1- and PCR2+ can be
mapped together with the paired-end reads sequenced from the original strands inducing ACGT-count bias showed in
Figure 5.

BRAT does not have any counting bias for the case when only original strands are sequenced, however in case of four
strands being sequenced, there might be a bias that users must account for by some other means (statistics, etc.) This is
shown in Figure 5.

G
DS+

GCmC5' 3'

PCR1
+, read 1 CT G G

PCR1
+, rc read 2 CT G G

A GCCPCR2
-, rc read 1

PCR2
-, read 2 GA CC

PCR1
-, rc read 1 T CG G

PCR1
-, read 2 T CG G

PCR2
+, read 1 C CA G

GAC CPCR2
+, rc read 2

Figure 5. There is no acgt-count bias for the case when two original strands are sequenced, but there might be a bias from
mapped paired-end reads sequenced from PCR1- and PCR2+ strands for unmethylated cytocines (or for partially
methylated cytocines) if the mates have no BS-mismatches or the number of inappropriate (see above) BS-mismatches is
less than or equal to the number of allowed non-BS mismatches.

