
USING BRAT-2.0.0

BRAT-bw is a tool for BS-seq reads mapping, i.e. mapping of bisulfite-treated sequenced reads. BRAT-bw is a part of

BRAT’s suit, and the usage of other tools in this suit remains unchanged and thus input and output formats for BRAT-bw

are the same as for BRAT. BRAT-bw supports single and paired-end reads, guarantees to find all matches with up to 1

mismatch in the first 32…64bp, has limitation on the minimum read length (32bp), and no limitation on the maximum read

length. The number of references is unlimited with total number of base-pairs limited to 232. BRAT-bw takes 6.3GB to map

reads to a human genome (hg18 was tested).

BRAT-bw uses the Burrows-Wheeler indexing together with the opportunistic data structure proposed by Ferragina and

Manzini for exact-search of a query. To use BRAT-bw, one has to build two indexes with the following two commands:

./build_bw -P path_to_index -G 1 -r file_with_references.txt
./build_bw -P path_to_index -G 2 -r file_with_references.txt

Option P provides absolute path to the directory with the resulting index, option G denotes the index to be built (see

below), and option r provides a file containing the names of FASTA files, each of which is with a single reference.

NOTE: a user must to build two indexes, one with option G set to 1 and another with option G set to 2,

and path provided with option P must be the same for both commands.

This builds two indexes: in the first index all Cs are converted to Ts and in the second all Gs are converted to As. An

additional option S with build_bw sets the total number of explicitly stored genomic positions (S= 1, 2, 4, 8, 16 or 32, with

default value of 16: each 16-th genomic position is stored). Setting S to 2 uses 16GB of memory on human genome, hg18,

and maps reads 2 times faster than with S = 16. It takes about 6 hours to build genome indexes (using two processors: one

for each index and building indexes simultaneously). Maximum space required for building an index is 3.5GB.

Once the indexes are built, a user re-uses these indexes to map reads (as with Bowtie).

Currently BRAT-bw supports only bisulfite libraries containing bisulfite-converted original genomic strands.

1 ANALYSIS PIPELINE

Currently BRAT-bw includes the following tools: build_bw, brat_bw, acgt-count, trim, remove-dupl and

convert_to_sam. The flow of the analysis pipeline is given in the figure below.

Reads

in

FASTQ

trim

remove-

dupl

brat_bw

References

in FASTA

acgt-count

Mapped

results

Methylome

build_bw

BW index

G=1

BW index

G=2

First, tool trim takes reads in FASTQ format, trims low-quality bases from both ends as well as Ns and outputs reads in

raw reads format that are accepted by brat_bw. Two BW-indexes are built using build_bw. After indexes have been built

and after using trim, brat_bw is used to map the reads to the reference genome. Next, mapped results are used as input

for remove-dupl that removes copy-duplicates keeping only a randomly chosen one, where copy-duplicates are the reads

that are mapped to the same start position in the reference. Finally acgt-count processes all the mapped results to produce

a methylome, a map with methylation status of each cytocine. Tool convert_to_sam converts BRAT’s output format to

SAM format.

2 COMMANDS AND INPUT

To uncompress run:

tar zxvf brat_bw-2.0.*.tar.gz

To build:

cd brat-2.0.*
make

This will create executable programs: build_bw, brat_bw, acgt-count, trim, remove-dupl and convert_to_sam.

Input format of the reads for BRAT-bw is raw reads:

 Read < string >: a read after using trim;

 Start <int>: the number of bases trimmed at the beginning of the original read;

 End <int>: the number of bases trimmed at the end of the original read.

To convert reads from FASTQ format to raw reads, one should run trim. If a user does not wish to trim reads’ low quality

score bases, then he/she should omit the option for the base quality score threshold: the default threshold equals to zero, so

all reads will be in the output without change in lengths (except for reads having Ns at the ends). If reads have Ns at the

ends, trim trims Ns at the ends and outputs only those reads whose length after trimming is greater or equal to 24 bases.

A command to run trim

This program trims low-quality bases (lower than a threshold given with option -q) and Ns from each end of a read: bases

are trimmed one at a time from both ends of a read until a base with quality score greater or equal than q is encountered

(similarly, all consecutive Ns from both ends of a read are trimmed). This tool outputs only those reads whose length is at

least 24 after trimming and that have at most m internal Ns: the number of allowable internal Ns is set by option -m.

To trim single-end reads in the file reads.fastq in FASTQ format and output trimmed raw reads into a file with name

prefix_reads1.txt, run the command:

./trim -s reads.fastq -P prefix -q 20 -L 64 -m 2

This will trim bases whose base quality scores are lower than 20 from the ends of reads. The option L specifies the smallest

value of the range of base quality scores in ASCII representation (please see Commands Options for details). To learn more

about Phred scores, please visit http://www.phrap.com/phred/. Option -m allows each read having at most 2 internal Ns.

Option -P provides prefix to the output file names (it might contain a path for an output file: -P /home/directory/prefix).

If the user does not wish to trim ends with low base quality scores, the -q option is not specified. For single-end reads, there

is a single output file with trimmed reads.

To trim paired-end reads in the files reads1.fastq and reads2.fastq in FASTQ format, run the command:

./trim -1 reads1.fastq -2 reads2.fastq -P prefix -q 20 -L 64 -m 2

Here we assume, that reads1.fastq contains sequenced 5` mates, and reads2.fastq contains sequenced 3` mates.

The output will be in four files with raw reads: prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and

prefix_mates2.txt. To further map paired-end reads, use prefix_reads1.txt and prefix_reads2.txt as input files for paired-end

http://www.phrap.com/phred/

mapping with brat or brat-large. The file prefix_mates1.txt contains reads from the file reads1.fastq whose mates have

shorter length than 24 bases after trimming. Similarly, the file prefix_mates2.txt contains reads from the file reads2.fastq

whose mates are shorter than 24 bases. The user can further map these files, prefix_mates1.txt and prefix_mates2.txt, as

single-end reads: for BS-mapping of the reads in prefix_mates2.txt, the user must specify -A option for mapping to work

correctly (the same is true if a user wishes to map the reads in prefix_reads2.txt as single reads).

Additional output files are prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq. These files

have the same reads as do files prefix_reads1.txt, prefix_reads2.txt, prefix_mates1.txt and prefix_mates2.txt respectively,

except the files prefix_pair1.fastq, prefix_pair2.fastq, prefix_mates1.fastq and prefix_mates2.fastq are in FASTQ format.

NOTE: current version of BRAT and BRAT-large do NOT support FASTQ format. These additional files are for users to

track original reads’ names and corresponding base quality scores.

Commands to run brat_bw

BRAT-bw maps raw reads (output from trim) using pre-built indexes (with build_bw). BRAT-bw accepts an absolute path

to the indexes previously built with build_bw. To map bisulfite single-end reads, run either of the commands:

./brat_bw -P path_to_index -s prefix_reads1.txt -o output_results.txt [Options]

./brat_bw -P path_to_index -s prefix_reads2.txt -o output_results.txt -A [Options]

Option P accepts absolute path to the pre-built with build_bw indexes. The file output_results.txt contains the results of

the mapping: only uniquely mapped reads are in this file. The option -bs is deprecated. BRAT-bw does not support normal

reads mapping:

To map bisulfite paired-end reads, run the following commands:

./brat_bw -P path_to_index -1 prefix_reads1.txt -2 prefix_reads2.txt -pe -o output_results.txt [Options]

The option -pe specifies paired-end mapping. The results of the mapping will be in output_results.txt. BRAT-bw does not

have in the output mates/pairs if a pair could not be mapped because of the wrong insert size, or wrong mates’ orientation,

or mates mapped to different chromosomes. However, if one mate is mapped ambiguously, and another is unique, then the

uniquely mapped mates are provided in the output files output_results.txt.mates1 and output_results.txt.mates2. If users

wish to process these *.mates files, they should treat them as mapped single-end reads with mates1 and mates2, i.e. when

submitting these files to acgt-count, output_results.txt.mates2 must be listed in the file with option -2 (see below how to run

acgt-count).

Commands Options:

-A specifies 3`mates (in our examples above, either of prefix_reads2.txt or prefix_mates2.txt files must be used with this

option). If the user does not specify this option, and provides either of the files, prefix_mates2.txt or prefix_reads2.txt, as

input reads for single-end mapping, the mapping will NOT be correct;

-s <single-end reads file>: to specify the file with input reads for single-end reads mapping;

-1 <paired-end reads file>: to specify the file with 5` mates for paired-end reads mapping (in our example,

prefix_reads1.txt). This option is also used with acgt-count;

-2 <paired-end reads file>: to specify the file with 3` mates for paired-end reads mapping (in our example above,

prefix_reads2.txt); This option is also used with acgt-count;

-pe to specify paired-end reads mapping (default is false, i.e. single-end mapping);

-i <positive integer>: to specify minimum insert size for paired-end mapping, the minimum distance allowed between the

leftmost ends of the mapped mates on forward strand (default is 100);

-a <positive integer>: to specify maximum insert size for paired-end mapping, the maximum distance allowed between the

leftmost ends of the mapped mates on forward strand (default is 300);

-o <string>: to specify the file with the results of mapping;

-m <integer>: the maximum number of non-BS-mismatches allowed by a user (default is 0).

-f <integer>: the number of the first bases of a read, where the restriction on the number of non-BS-mismatches applies: for

BRAT-bw, only one non-BS-mismatch is allowed in the first <integer> bases. This option is deprecated: the program sets

the best-performing values dependent on the read length (this is convenient since BRAT-bw accepts reads of variable

length).

-F <int>: sets mapping mode where each base within f first bases (option above) is substituted with 2 other possible bases.

For short reads, to find mapping with m mismatches and 1 mism in the first f bases, set -F to 1, for longer reads it is more

time efficient to keep a default value, 0 (this will not affect mapping accuracy with longer reads) (default 0).

-P <directory name> Absolute path to the pre-built index.

-K <int> for longer reads: maximum number of shifts in multi-seed mapping (default is 10)

-C sets mapping mode, where C in a read is ALLOWED to be mapped to T in a genome without punishment (without this

option C in a read to T in a genome is considered as a mismatch);

-L <integer>: the smallest value of the range of base quality scores in ASCII representation (default is 33).

The table below gives examples of different quality scores and their range in ASCII representation (from Wikipedia). The

option L uses the values in the “Smallest Value in ASCII representation” column.

Type Smallest Score Largest Score Smallest Value in

ASCII representation

Largest Value in

ASCII representation

Phred quality score

(Sanger format)
0 93 33 126

Solexa/Illumina, 1.0 -5 62 59 126

Soloexa/Illumina,

1.3+
0 62 64 126

-B: specifies the second option for output with acgt-count (please read Output format for acgt-count).

A command to run remove-dupl

This program processes the mapping results and removes copy-duplicates: it outputs all reads that are mapped to a unique

genomic location and only a randomly chosen one out of copy-duplicates (the reads mapped to the same location).

./remove-dupl -r references_names.txt -p pairs_results.txt -1 single_results_mates1.txt -2 single_results_mates2.txt

NOTE: the file pairs_results.txt does not contain the actual results, it contains the names of the files with the results

for paired-end mapping, and similarly, single_results.txt file contains the names of the files with the actual results

for single-end mapping.

For example, the content of pairs_results.txt is:

output_pairs_lane1.txt

output_pairs_lane2.txt

and the content of single_results_mates1.txt is:

output_singles_mates1_lane1.txt

output_singles_mates1_lane2.txt

and the content of single_results_mates2.txt is:

output_singles_mates2_lane1.txt

output_singles_mates2_lane2.txt

The output of remove-dupl are the files with the same names as before with additional extension “.nodupl”:

output_pairs_lane1.txt.nodupl

output_pairs_lane2.txt.nodupl

output_singles_mates1_lane1.txt.nodupl

output_singles_mates1_lane2.txt.nodupl

output_singles_mates2_lane1.txt.nodupl

output_singles_mates2_lane2.txt.nodupl

For single-end mapping, run the following command:

./remove-dupl -r references_names.txt -s single_results.txt

The file single_results.txt contains the names of the files with mapping results.

NOTE: that the output files with extension “.nodupl” are opened with C++ “app” option (opens a file and appends

output to the file’s content). This means that once you have run remove-dupl, you will have “.nodupl” files, and if you want

for some reason to run remove-dupl on the same files (and possibly some additional files), you need to remove “.nodupl”

files for the corresponding files first and only then re-run remove-dupl. For example, as in the example above, you run

remove-dupl and obtain “.nodupl” files:

output_pairs_lane1.txt.nodupl

output_pairs_lane2.txt.nodupl

output_singles_mates1_lane1.txt.nodupl

output_singles_mates1_lane2.txt.nodupl

output_singles_mates2_lane1.txt.nodupl

output_singles_mates2_lane2.txt.nodupl

Then you wish to add output_pairs_lane3.txt to pairs_results.txt:

output_pairs_lane1.txt

output_pairs_lane2.txt

output_pairs_lane3.txt

and to re-run remove-dupl on all files.

Make sure your delete existent files with extension “.nodupl”:

rm output_pairs_lane1.txt.nodupl

rm output_pairs_lane2.txt.nodupl

rm output_singles_mates1_lane1.txt.nodupl

rm output_singles_mates1_lane2.txt.nodupl

rm output_singles_mates2_lane1.txt.nodupl

rm output_singles_mates2_lane2.txt.nodupl

and only then run remove-dupl.

If you don’t remove these files, you will have previous output plus new output (for example: if

output_pairs_lane1.txt.nodupl had 100 lines, then re-running remove-dupl without removing this file will result in 200

lines).

A command to run convert-to-sam

This program converts BRAT format to SAM format.

./convert-to-sam -P prefix -p pairs_results.txt -1 single_results_mates1.txt
-2 single_results_mates2.txt -s single_results.txt

NOTE: the file pairs_results.txt does not contain the actual results, it contains the names of the files with the results

for paired-end mapping, and similarly, single_results*.txt files contain the names of the files with the actual results

for single-end mapping (see examples in “A command to run remove-dupl”).

NOTE: Use options -1 and -2 only when mapping paired-end reads as singles (for 5’ mates and 3’ mates

respectively), and option s if the original sequenced reads were single reads.

The output will be in two files with names prefix_forw.sam and prefix_rev.sam if option P is provided, or

mapped_to_forw.sam and mapped_to_rev.sam if not. The reason behind separating the mapped reads into two separate

files is the following. To distinguish between methylated and unmethylated cytosines in aligned reads, one has to look at C

mapped to C and T mapped to C respectively if reads come from forward strand, and one has to look at G mapped to G and

A mapped to G respectively if reads come from reverse strand. If one has a mixture of reads from forward and reverse

strands, it would be impossible to track methylated and unmethylated cytosines when visualizing aligned reads.

Paired-end mapped mates mapped as pairs are both either in forward output file (prefix_forw.sam) if 5’ mate (the first

mate) is mapped to positive strand, or both in reverse output file (prefix_rev.sam). Reads from files with option 1 are in

forward output file if they are mapped to positive strand, and in reverse output file if they are mapped to negative strand.

Reads from files with option 2 are in forward output file if they are mapped to negative strand, and in reverse output file if

they are mapped to positive strand. Single reads from files with option s are in forward output file if they are mapped to

positive strand, and in reverse output file if to negative strand.

NOTE: that the output files with extension “.sam” are opened with C++ “app” option. Please see details how to be

careful with re-running convert-to-sam in “A command to run remove-dupl” (since it is similar situation as with remove-

dupl).

A command to run acgt-count

To count mapped As, Cs, Gs and Ts at each base of forward and reverse strands of the references, use acgt-count.

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt

the file references_names.txt contains the names of FASTA files with the references, which are needed to calculate the

sizes of the references. The output will be in two files per a reference: prefix_forw_aReference_name and

prefix_rev_aReference_name. The option -p is to specify the results of paired-end mapping (if any), and -s is to specify the

results of single-end mapping (if any). NOTE: the file pairs_results.txt does not contain the actual results, it contains

the names of the files with the results for paired-end mapping, and similarly, single_results.txt file contains the

names of the files with the actual results for single-end mapping. At least one of these options must be provided. The

files whose names are listed in the files pairs_results.txt and single_results.txt must be in BRAT’s output format.

To make this point clear, assume, a user ran brat on paired-end reads and had the output file with the results in

output_pairs_results.txt; to run acgt-count, the user must store the name of this file in pairs_results.txt file and run

acgt_count using pairs_results.txt (i.e. pairs_results.txt will have in this case one line, namely, output_pairs_results.txt).

The command for this example is:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt

Please note that if a user has paired-end reads (files with mates 1 and mates 2) and wishes to map the mates as

single-end reads, then the user must provide names of the files with results for mates 1 and mates 2 separately using

options -1 and -2. This will ensure unbiased ACGT-counting when reads are sequenced from two original genomic

strands:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -1 single_results_mates1.txt -2 single_results_mates2.txt

To produce a more concise output, use option -B (choose an appropriate command from the commands below):

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt -B

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -1 single_results_mates1.txt -2 single_results_mates2.txt -B

This program takes care of overlapping mates: if two mates of a pair overlap, then ACGT-count is done only for one mate

in the overlapped region. This program also takes care of producing un-biased ACGT-count from mates 2 (3` mates).

Please see Details on ACGT-count section for details.

3 OUTPUT FORMAT

Output format for brat_bw for single-end mapping

 Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;

 Read 1 < string >: the read given as in the input file (prefix_reads1.txt);

 Reference name < string >: a name of a reference to which the read is mapped (the first word following “>” in a

FASTA file);

 Strand “+” if the read is mapped to forward strand, and “-“ if the read is mapped to reverse strand;

 Position < integer >: position within the reference starting with 0, where the read is mapped (the leftmost position

on forward strand).

 The number of non-BS-mismatches <int>

 Original position <integer>: position within the reference starting with 0, where the original read is mapped (the

leftmost position on forward strand), where original read is the read before its ends have been trimmed. For

example, if the number of trimmed bases at the beginning of a read is 2, and the read is mapped to positive strand

at the position 10, then original position is 10 – 2 = 8. If the number of trimmed bases at the end of a read was 3

and the reverse-complement of the read is mapped to the position 10 on positive strand, then original position =

position – 3 = 10 – 3 = 7. The original positions are used to identify copy-duplicates.

Output format for brat and brat-large for paired-end mapping

 Read id < integer >: a consecutive number of a read in the reads input file that starts with 0;

 Read 1 < string >: the first mate of a pair given as in the input file (prefix_reads1.txt);

 Read 2 < string >: the second mate of a pair given as in the input file (prefix_reads2.txt);

 Reference name < string >: a name of the reference to which the pair is mapped (the first word following “>” in a

FASTA file);

 Strand “+” if 5` mate (from prefix_reads1.txt) is mapped to forward strand (consecutively, 3` mate, from

prefix_reads2.txt, is mapped to reverse strand), and “-“ if the 5` mate is mapped to reverse strand (and 3` mate to

forward strand);

 Position 1 < integer >: position within the reference starting with 0, where 5` mate is mapped (the leftmost

position on forward strand);

 Position 2 < integer >: position within the reference starting with 0, where 3` mate is mapped (the leftmost

position on forward strand).

 The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 5` mate

 The number of non-BS-mismatches < integer >: the number of mismatches in the alignment for 3` mate

 Original position 1 <integer>: original position for 5` mate (see definition of original position above)

 Original position 2 <integer>: original position for 3` mate (see definition of original position above)

Output format for acgt-count

Starting with version brat-1.1.17, there are two choices for output format.

The first choice: The number of output files will be double the number of input references: two for each reference listed in

references_names.txt file (one file for forward strand and the other for reverse strand). In each file, there are M lines, where

M is the size of a corresponding reference in base pairs. Each line corresponds to a base of a strand and contains counts for

As, Cs, Gs and Ts at that base for all mapped reads (i.e. there are four integers per line: from left to right for As, Cs, Gs and

Ts).

For the reverse strand, the counts of As, Cs, Gs and Ts are given for the reads that are mapped to the reverse strand, but the

counts are obtained by aligning the reverse-complements of these reads with the forward strand.

Following is an example to illustrate this point.

Let a read ACCGTT be mapped to a reverse strand at position i, then the corresponding forward strand starting at position i

is AACGGT, and the counts for the reverse strand at positions i …i+5 from this read are incremented for the following

nucleotides: i(A), i+1(A), i+2(C), i+3(G), i+4(G) and i+5(T).

The second choice: If a user provides option -B:

./acgt-count -r references_names.txt -P prefix -p pairs_results.txt -s single_results.txt -B

then the output is in two files: one file for positive strand and another for negative strand (output files will contain words

“forw” and “rev” to distinguish between strands). Each line in the output corresponds to a base in the genome that is either

a cytocine on positive strand or cytocine on negative strand (given in separate files). Output format:

chrom, start, end, total, methylation_level, strand

where chrom is the reference name, start and end are positions in the genome (Note: base count in a reference starts with

0), total takes one of the values: CHH:X, CHG:X or CpG:X, where X is the sum of counts of Cs and Ts mapped to this

base, methylation level is calculated as the number of Cs over the total (methylation level = count_C/(count_C +

count_T)). CHH, CHG and CpG describe the sequence content following C: if two consecutive bases that follow C are not

G, then total = CHH:X; if the first consecutive base following C is non-G and the second consecutive is G, then total =

CHG:X; and finally, if G follows C (we have CG di-nucleotide), then total = CpG:X.

Output format for trim.

The tool trim accepts FASTQ files with reads/pairs as input, trims the ends of the reads whose base quality scores are lower

than the user specified threshold or whose ends are Ns. The output for single reads is a single file with reads whose lengths

might be different and whose lengths are greater than or equal to 24 bases. The output for pairs is four files: two for paired-

end mapping, and two for single-end mapping. Trimming of paired-end reads produces two files with single reads: if one

mate is shorter than the minimum length allowed, and the other’s length is correct, then the mate with the correct length

will be output into a corresponding file with single reads. Two files for single reads are necessary because BS-mapping for

5` and 3` mates is different. Each file contains a single line (raw reads format) with the following fields:

 Read < string >: a read after using trim;

 Start <int>: the number of bases trimmed at the beginning of the original read;

 End <int>: the number of bases trimmed at the end of the original read.

4 DETAILS ON MULTI-SEED MAPPING

BRAT-bw uses Burrows-Wheeler index to map reads. This index uses a concept of data structure that is a

lexicographically sorted list of all possible suffixes of a given text (in our case given genome). With this approach, a read

of length N is mapped base by base, and two values are calculated (we’ll call them sp and ep) for each base. These values

for a read base at i-th position denote start and end locations of the suffix [i…N] of the read within the lexicographically

sorted list of all suffixes of the genome. Thus if sp < ep, then there exist more than one genomic suffixes starting with

read’s suffix [i…N] and hence genomic locations, where this suffix occurs, and if sp = ep, then this suffix is uniquely

mapped within genome, but with sp > ep, there is no location within the genome, where the suffix [i…N] could be mapped.

 BRAT-bw aligns longer reads using multi-seed approach. It is a well-known property that in a read of length N with k

mismatches, there is at least one consecutive stretch of length N/(k+1) of the read without any mismatches. BRAT-bw

makes K attempts (option -K) to align read from different locations within the read starting from the end of the read

intending to find the region within the read that aligns perfectly. In the first attempt, BRAT-bw starts from the end of the

read, aligns the read base by base until there is a unique match (suffix of the read or entire read aligns uniquely to the

genome), or until sp > ep for some base at i-th position, i.e. there is no match for the suffix of the read starting at i (say,

suffix READ[i…N]). Thus, READ[i…N] is the smallest suffix that does not align perfectly in a genome. If a suffix of the

read aligns to one or more genomic locations, BRAT-bw makes additional full-length check-alignment and disregards

alignments with the number of mismatches greater than the threshold provided with option -m. If a suffix READ[i…N] of

the read could not being mapped exactly, but is longer than 31bp, then BRAT-bw makes additional full-length check-

mapping on the last valid genomic location, to which a shorter suffix was mapped exactly, i.e. if READ[i…N] did not map

exactly then BRAT-bw performs full-length checks for genomic locations to which READ[i+1…N] mapped exactly. The

number of attempts is controlled by option -K. Next attempt is performed starting from D bases to the left of the previous

attempt (see Figure below), and the process repeated until all attempts have been completed. Then BRAT-bw attempts

perfectly align the first f (dynamically controlled by program dependent on the read length) bases in order to find a match

or to identify ambiguous reads. If option F is set to 1, then BRAT-bw substitutes each base of the first f bases with the

other two possible bases, and for each substitutions, aligns the first f bases (containing a substitution), if there is a match, it

performs additional check-alignment on the entire read length.

Figure above shows attempts of read alignment by arrows above the read. We showed a sequenced error (or a mismatch) in

red. All attempts that cover this mismatch will either fail or result in wrong alignments, but other attempts that have

stretches of the read without mismatches will identify correct alignment(s). D determines the interval in bases between

consecutive alignments (8 bases on Figure above). D is set by BRAT-bw dynamically dependent on read length.

5 DETAILS ON ACGT-COUNT

BRAT-bw supports mapping of bisulfite library by Lister et al., where sequenced reads are bisulfite conversions of two

original genomic strands.

Let us denote a mapping of a base in a read to a base in the reference as C→C, T→C, A→G, G→G. Initially, we thought

that if a read maps to a positive strand, then the mappings C→C and T→C contribute to the count of methylation level of

cytocines of the positive strand. Similarly, if the reverse-complement of a read maps to the positive strand (equivalently, a

read maps to the negative strand), then the mappings A→G and G→G contribute to the count of methylation level of

cytocines of the negative strand. Let us illustrate this idea in Figures 1-3 below.

Figure 1. After the special adapters with methylated cytokines are ligated to DNA fragments, sodium bisulfite treatment

(BS-treatment) is applied to DNA fragments, after which unmethylated cytocines are converted to uracils and later to

thymines during PCR for library amplification. Note, that after BS-treatment, there are four distinct PCR-product strands:

PCR1+ and PCR2- (correspond to original genomic strands) and PCR1- and PCR2+ (the reverse-complements of PCR1+

and PCR2- respectively). Note, that PCR1+ and PCR2- are T-rich and C-depleted (since unmethylated cytocines converted

to thymines), and PCR1- and PCR2+ are A-rich and G-depleted (as the reverse-complements of PCR1+ and PCR2-

respectively).

Figure 2. Here we show the sequenced pairs resulted from sequencing all four PCR-product strands, each of which serves

as a template during sequencing. If PCR1+ is attached to the flow cell, then in single-end sequencing, 5’-end of this strand

is sequenced; in paired-end sequencing, 5’-end of PCR1+ is sequenced, then PCR1+ is copied into its reverse-complement

PCR1- and 5’-end of PCR1- is sequenced as the second mate of a pair. Similarly, sequencing produces reads for the rest of

strands. If procedure has some technical details that ensure that only original genomic strands serve as templates for

sequencing, then even though we have four PCR-product strands, we’ll have reads sequenced only from PCR1+ and

PCR2- with mates ordering shown above (in paired-end sequencing, the left column of reads are mates 1 will have reads

IDs end with “1” and will be in one file, the right column of reads are mates 2 will have reads IDs end with “2” and will be

in the other file of Illumina’s sequenced reads).

CGA TA GCT TGT GAT5' 3'
PCR

1
+

CG AA CTA 5'3'

CC GTT AT GG GA TTA 5'3'
PCR

2
-

TA AA GCC 3'5'

sequenced pairs

 AATCTGG CACTAAG

TGCTAAG AACCTAG

CC GCT AT GA AA CTA 5'3'
PCR

1
-

TA GA GCT 3'5'

CAA A GCC CGT AAT5' 3'
PCR

2
+

T

CG GA TTA 5'3'

PCR
1
+

PCR
2
-

CACTAAG AATCTGGPCR
1
-

PCR
2
+ AACCTAG TGCTAAG

Figure 3. Here, we show mapping of the pairs sequenced from all four strands. The bottom strand shows positive strand of

the reference with methylated cytocine shown in blue and methylated cytocine on negative strand shown as G in orange.

This figure demonstrates that if we use simplified approach of counting methylated level of cytocines from positive and

negative strands, then we introduce a bias in counting methylation level of unmethylated cytocines (either cytocines that

are partially methylated across cells of a sample or completely unmethylated). For example, read 2 (mate 2) from PCR1+

maps to negative strand (its reverse-complement maps to positive strand), and therefore, initially we contributed ACGT-

counts from this read toward negative strand. This was incorrect: in this Figure, bias is introduced by counting G from this

read (in red circle) toward unmethylated G (i.e. unmethylated cytocine on negative strand). The count of another G from

this read (in green circle) toward methylated G did not introduce a bias (since methylated G has only Gs mapped to it), but

the coverage of methylated Gs is also not what it would have been were we using the correct counting. Similar bias is

introduced when counting contribution of ACGT from mates 2 from PCR2+.

From Figures 1-3, we can observe that mate 2 of PCR1+ strand is reverse-complement 3’-end of PCR1+; thus, mate 2 must

reflect methylation on positive strand rather than on negative strand. For example, methylated C on PCR1+ will be G on

PCR1-, and unmethylated C (which is T) on PCR1+ will be A on PCR1-. Thus, T→C and C→C, where T and C

respectively belong to PCR1-, must contribute to the count of methylation level of cytocines on positive strand. Similarly,

A→G and G→G (with A and G belonging to PCR2+) must contribute to the count of methylation level of cytocines on

negative strand.

These changes have been made to acgt-count and now ACGT-counting from second mates of pairs sequenced from PCR1+

and PCR2- is done without bias, which is demonstrated in Figure 4.

Figure 4. If mate 1 of a pair maps to positive strand (case of a pair sequenced from PCR1+), then we increment ACGT-

count from both mates for positive strand, and methylation level of a cytocine on the positive strand can be measured as

total Cs mapped to positive strand to the sum of total Cs and total Ts mapped to the positive strand. If mate 1 of a pair

maps to negative strand (case of a pair sequenced from PCR2-), then we increment ACGT-count from both mates for

negative strand. Methylation level can be determined for each G on positive strand of the reference (G on positive strand

corresponds to C on negative strand) by looking into acgt-count output for negative strand and taking the ratio of total Gs

mapped to this position and the sum of total Gs and As mapped to this position.

