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Abstract

In this study we introduce a novel graph-based kernel method for annotating functional residues in
protein structures. A structure is first modeled as a protein contact graph, where nodes correspond
to residues and edges connect spatially neighboring residues. Each vertex in the protein contact
graph is then represented as a vector of counts of labeled non-isomorphic subgraphs (called graph-
lets), centered on the vertex of interest. A similarity measure between two vertices is expressed as
the inner product of their respective count vectors and is used in a supervised learning framework
to classify protein residues. We evaluated our method on two function prediction problems: identi-
fication of catalytic residues in proteins, which is a well-studied problem suitable for benchmark-
ing, and a much less explored problem of predicting phosphorylation sites in protein structures. We
compared the graphlet kernel approach against two alternative methods, a sequence-based predic-
tor and our implementation of the FEATURE framework. On both function prediction tasks the
graphlet kernel performed favorably compared to the alternatives; however, the margin of differ-
ence was considerably higher on the problem of phosphorylation site prediction. While there is
both computational and experimental evidence that phosphorylation sites are preferentially posi-
tioned in intrinsically disordered regions, we provide evidence that for the sites that are located in
structured regions, neither the information related to surface accessibility alone nor the averaged
measures calculated from the residue microenvironments utilized by FEATURE were sufficient to
achieve high prediction accuracy. We believe that the key benefit of the proposed graphlet repre-
sentation is its ability to capture similarity between local neighborhoods in protein structures via
enumerating the patterns of local connectivity in the corresponding labeled graphs.



Introduction

With over 50,000 structures deposited in the Protein Data Bank (PDB) [1] and high-throughput ef-
forts under way [2], functional characterization of proteins with known 3D structure is gaining im-
portance in the global effort to understand structure-to-function determinants [3]. Experimental
assays for functional characterization are expensive and time-consuming, thus the development of
accurate computational approaches for function prediction is essential to the functional annotation
process [4,5]. Typically, the problem of protein function prediction reduces to one or more of the
following questions: (1) prediction of the molecular and biological function of the molecule, (2)
prediction of ligands, cofactors, or macromolecular interaction partners, and (3) prediction of the
residues involved in or essential for function, e.g. interface sites, hot spots, metal binding sites, cata-
lytic sites or post-translationally modified residues [6]. At a higher level, computational methods
can be used to establish connections between proteins and disease, typically via simulating protein
folding pathways [7] or by using statistical inference techniques to predict gene-disease associa-
tions [8] or the effects of mutations [9].

Prediction of protein function from 3D structure emerged in the late 1980s and early 1990s
when the accumulation of solved structures in PDB made systematic studies feasible. There are four
basic approaches used in this field, starting from residue-level function and building toward higher
level annotation: (1) residue microenvironment-based methods, (2) template-based methods, (3)
docking-based methods, and (4) graph-theoretic approaches. In addition to these bottom-up strate-
gies, another group of methods tackle the problem top-down to directly predict protein function on
a whole-molecule level, without necessarily finding functional residues, and then investigate the
residues most critical in the classification process.

In residue microenvironment-based approaches, one defines a neighborhood around a residue
of interest and counts the occurrences of different atoms, residues, groups of residues or de-
rived/predicted residue properties within this neighborhood. Zvelebil and Sternberg [10] used
spherical neighborhood to distinguish between metal binding and catalytic residues, while Gregory
et al. [11] and Bagley and Altman [12] used concentric spheres to generate a score [11] or create a
set of features [12] which can be used to predict various functional properties. The residue micro-
environment strategy has also been extended to the unsupervised framework, for instance, to gain
insights into structural conservation and its relationship with function [13] and has been combined
with localized molecular dynamics simulations to predict function [14]. Template-based methods,
introduced in the 1990s [15,16,17,18], encode spatial relationships between residues known or as-
sumed to be functionally important in order to scan query protein structures for the existence of
similar patterns. A classical example of a template is the catalytic triad in serine proteases, where
Ser, His, and Asp residues are required to occur on the surface of the protein, within a predefined
set of distances. Another template-based strategy, adopted from computer vision, is geometric
hashing, in which a database of atoms or residue patterns is searched for similarities with the new
structures [19,20,21]. Recently, strategies based on small molecule docking to a protein structure
have also been used, where identification of a common ligand, preferably in its high-energy state,
may indicate similar molecular function of the protein substrates, e.g. catalysis of the same reaction
[22,23]. Finally, graph-theoretic approaches have been proposed in the context of computational
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chemistry and data mining. The idea common to all these approaches is to transform protein struc-
tures into graphs, where vertices encode residues, atoms or secondary structure elements, and
edges reflect proximity or physicochemical interactions. In one of the earliest approaches, protein
structures were scanned for isomorphic subgraphs [24,25]. Other authors addressed the problem
via the framework of frequent subgraph mining [26,27,28], typically starting with a set of proteins
known to have the same or similar function. Several residue-level functional predictors have been
implemented as public web services dedicated to predicting both functionally important residues
as well as the global function of the protein [29,30,31,32].

Methods that predict function directly at the whole-molecule level [33,34] can in principle be
combined with approaches that identify functional residues in the general sense [35,36,37,38,39] to
achieve similar results. Finally, we note that structural-alignment algorithms (e.g. DALI [40]) can
also be used to carry out function prediction. However, a small number of protein folds (~1000)
compared to the large number of protein functions (~6000 leaf nodes for molecular function or bio-
logical process in GO) combined with the fact that different protein folds can be associated with
identical or similar functions limit the usability of structural-alignment algorithms for this task.

In this study, we introduce a method, referred to as the graphlet kernel, for identifying function-
al sites in protein structure. We first represent a protein structure as a contact graph where nodes
are residues and edges connect vertices that correspond to the neighboring residues in space. The
method then combines the graphlet representation of every vertex in a graph [41] and kernel-based
statistical inference [42]. We extend the concept of graphlets to labeled graphlets and use the
counts of labeled graphlets to compute a kernel function as a measure of similarity between the
vertices. We show that the graphlet kernel generalizes some previous methods such as FEATURE
[12,43] and S-BLEST [13] and can also be readily extended to other problems involving graphs, in
either a supervised or an unsupervised learning scenario. Finally, we provide evidence that the per-
formance of this algorithm compares favorably to standard sequence and structure-based methods
in the tasks of predicting phosphorylation sites and catalytic residues from protein structures.

Materials and Methods

The problem addressed here can be generally defined as follows: given a protein structure, proba-
bilistically assign function to each amino acid. Functional assignments are based on similarities of
the structural neighborhoods of residues under consideration and measured in terms of local pat-
terns of inter-residue connectivity. We start by modeling a protein structure as a protein contact
graph, where each amino acid is represented by a vertex in the graph and two vertices are con-
nected by an undirected edge if the corresponding amino acids are closer than some predetermined
distance. We then introduce the graphlet kernel, an efficient method for computing similarities of
vertex neighborhoods, and show how a maximum margin classifier (e.g. support vector machine)
can be used for binary classification of vertices.

More formally, let us assume that the input data to our algorithm consists of a set of protein
structures, represented by a single disconnected graph G = (V, E), where V is the set of labeled ver-
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tices and E c V x V is the set of edges. We consider two labeling functions f: V— A, where A is a
finite alphabet, and g: V — {+1, -1}, where g(v) = +1 indicates that the residue is functional and
g(v) = -1 indicates that the residue is not functional or that the functional information is unknown.
The task of the kernel-based classifier is to assign a posterior probability of positive class to every
vertex of an unseen protein contact graph.

In the remainder of this section, we briefly review the notion of graphlets and automorphism
orbits [41,44]. We extend the concept of automorphism orbits to labeled graphs, present an efficient
method for enumerating labeled automorphism orbits and introduce a novel topological similarity
measure which is based on the counts of labeled automorphism orbits. We show how a kernel func-
tion is computed by comparing the local graph neighborhoods between pairs of vertices.

Graphlets and Automorphism Orbits

Graphlets are small non-isomorphic connected subgraphs [41,44] which can be used to capture lo-
cal graph or network topology. Because a graph can be thought of as being composed of a collection
of interdependent graphlets, the counts of graphlets (up to a given size) provide a characterization
of the graph properties in a constructive, bottom-up fashion. We refer to a graphlet with k vertices
as a k-graphlet. Figure 1 illustrates graphlets of size up to 4.

FIGURE 1

The graph-theoretic concept of automorphism (of graphlets) allows one to explicitly model rela-
tionships between a graphlet and its component vertices. For example, in the case of graphlet g,
the vertex of interest may be at the periphery or in the center of the graph (Figure 1). Different po-
sitions of this pivot vertex with respect to the graphlet correspond to automorphism orbits, or or-
bits for short. Accordingly, the two orbits corresponding to graphlet g, are labeled as 0, and o3 (Fig-
ure 1). In the following sections, we show an efficient way to enumerate the orbits which surround
the vertex of interest. For a more formal treatment of graphlets and automorphism orbits we refer
the reader to a study by Przulj [44].

We extend the concepts of graphlets/orbits to labeled graphlets/orbits by associating each ver-
tex in a graph with a symbol from a finite alphabet A. In the case of protein contact graphs, these
labels can represent either the amino acids or one of the reduced alphabets incorporating informa-
tion on various physicochemical properties of amino acids. The alphabet can also be an extended
set of amino acids where higher level residue properties (e.g., secondary structure assignment) are
incorporated. In an alternative version of the protein contact graph, vertices may correspond to the
elements of secondary structure [34], or if a contact graph is constructed on the atom level, nodes
may be labeled with the symbols of chemical elements [45].



Combinatorial Enumeration of Graphlets and Orbits

We limit further discussion to graphlets and orbits with up to four vertices. For protein contact
graphs constructed using the most common parameters, this level of detail is likely to be sufficient,
because short characteristic paths follow from the small world properties of such graphs [46]. It is
not difficult to extend this approach to graphlets of sizes five and above to be used in the analysis of
protein-protein interaction networks, for example. The computational cost involved in counting,
however, can become prohibitive as the number of different graphlets grows exponentially with the
number of vertices.

We start by computing shortest-path distances between a vertex in V to the remaining vertices
using breadth-first search. Given that we are only interested in graphlets of size up to 4, we can
terminate the search after the third level. The resulting subgraph is then used to count labeled or-
bits.

Counting 1-graphlets and 2-graphlets. Counting 1-graphlets and 2-graphlets is straightforward.
There is exactly one 1-graphlet per vertex in a graph. To count 2-graphlets it suffices to examine the
adjacency list of the pivot vertex p. Using the distances of vertices from the pivot as the naming
convention, we name this case 01 (see Figure 2 for the schematic representation of the counting
algorithm). There is a total of deg(p) type g1 graphlets, i.e. orbits 01, where deg(.) denotes the de-
gree of a vertex.

FIGURE 2

Counting 3-graphlets. There are two cases for counting 3-graphlets: 011, where both non-pivot ver-
tices are at distance 1 from the center, and 012, when one vertex is at distance 1 and the other is at
distance 2 (Figure 2). Case 011 yields 3-graphlets with orbits 03 or 04, but in order to determine the
exact orbit type, we need to determine whether there is an edge between the two vertices at dis-
tance 1. Case 012 yields only o orbits. Here we do not have to perform the additional edge check
because distance 2 implies that there is no edge directly connecting the vertex with the center.

Counting 4-graphlets. There are four cases for counting 4-graphlets, namely 0111, 0112, 0122 and
0123 (Figure 2). Case 0111 yields orbits os, 010, 014 Or 015, and requires to check connectivity be-
tween level-1 neighbors of the pivot vertex. Case 0112 yields o¢, 011, 012 or 013 orbits; case 0122
yields 07 or o9 orbits; and case 0123 yields os orbits. Similarly to the case 012 in the 3-graphlet
counting, the edge checks between the center and vertices with distance 2 or 3 are not necessary.

Assuming that counts of labeled orbits are kept in a hash table which allows expected constant
time access to the elements, the counting algorithm runs in O(|E,|) + O(d*) time, where |E,| is the
number of edges within the level-3 neighborhood of the pivot vertex p and d is the maximum de-
gree of a vertex in that neighborhood. The first term in the sum is related to the breadth-first
search, whereas the second reflects the cost of counting over all cases, assuming that one can check
the existence of edges in O(d) time using a space-efficient adjacency list representation. This time
complexity analysis does not include the time needed to convert a protein structure into the contact
graph.



The description of the algorithm has so far ignored vertex labels. In Figure 2 we demonstrate
the relationship between the pivot of the graphlet and the remaining vertices. For example, in the
0111 case for orbits os and o1s, the positions of all three non-pivot points are symmetric with re-
spect to the pivot. Hence, when we assign the label to orbits og or 015, we lexicographically sort the
labels of individual residues for consistency. In contrast, in the 0111 case for orbits 019 and 014,
there is a topological difference between vertices marked with a and b, but there is no difference
between any two vertices each marked with a or b. In this case, when we assign the label to orbits
010 OT 014, we first sort the vertices according to their position with respect to the pivot and then
lexicographically sort the vertices with the same position based on their labels. This labeling
scheme guarantees that a group of vertices will always be labeled in a consistent way without in-
troducing counting artifacts.

The Graphlet Kernel

We characterize graph vertices in terms of their local neighborhoods in the labeled contact graph.
Specifically, for each vertex x € V we look at the distributions of labeled orbits where x is the pivot
node. Given two vertices, x and y in the protein contact graph, we define the kernel function K as the
following inner product:

K(x,y) = (®(x), P(y))

where ®(x) = (¢1(x), 92(x), ..., i (X)) and @(y) = (¢1(¥), P2(¥), ..., @m (¥)) are vectors of counts
of labeled orbits. Here, ¢;(x) denotes the number of times labeled orbit o; occurs in the graphlet

expansion of node x. Function K(x, y) is defined over all pairs of vertices x and y, and forms a sym-
metric and positive semidefinite kernel matrix K, because each element of K is an inner product of
vectors of counts [47]. In addition to the kernel K(x, y), we also consider the normalized kernel K’

defined as K'(x,¥) = K(x,y) /K (x,x) - K(y,).

Dimensionality of Graphlet Representation

Before addressing the computation of the kernel matrix, it is of interest to analyze the dimensionali-
ty of the count vector ®(x). Clearly, the number of labeled orbits o is |A| and the number of labeled
orbits 01 is |A|2. Similarly, the number of orbits 0, equals |A|3 and the number of orbits os, 011, and
os equals |A|% A characteristic of orbits 0o, 01, 02, 05, 06, and 011 is that there is no symmetry with
respect to the pivot, and results in counts equal to the powers of |A| during enumeration of all or-
bits. The remaining cases, on the other hand, are required to separately address every group of
symmetric vertices. These vertices are labeled by the same letter (g, b, or c) for the graphlets in Fig-
ure 2. Consider now orbits o3 and o0s4. There are |A| possibilities for the pivot position, while the
number of possibilities for the two vertices labeled as a must begin by grouping of all |A|2 cases
based on the lexicographically sorted vertex labels. For example, for A = {0, 1}, labels 01 and 10 are
grouped together, while for A = {0, 1, 2} labels 001, 010, and 100, or labels 122, 212, and 221,
among others, are identical after the lexicographical sorting and thus belong to the same equiva-
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lence classes. The number of equivalence classes, in turn, corresponds to the number of terms in the
multinomial expansion of (x; + x, + ---x|cﬂ|)2. In general, multinomial expansion of a k-nomial
raised to the nth power, i.e. (x; + x5 + +-- x;)™, corresponds to n symmetric residues over an alpha-
bet of size k and has C(n + k — 1, k — 1) multinomial coefficients, where C(n,m) = (;‘l) Therefore,

the total number of labeled orbits 03 and o4 is |A| - C(|A| + 1, |A| — 1). Extending this calculation to
the remaining orbits, we obtain that the number of distinct labels of orbits os and o015 is
|A| - C(|A| + 2, |A]| — 1), and the number of labels of orbits o7, 09, 010, 012, 013, and 014 is |A|? - C(|A|
+ 1, |A| — 1). In total, when |A| = 20, the dimensionality of the encoding for a single vertex x adds
up to dim{d(x)} = 1,062,420. We observe that for certain tasks, e.g. prediction of phosphorylation
sites, only a subset of residues can be phosphorylated (S, T, Y) and thus the number of choices for
the pivot position is 3 instead of 20. Alternatively, a separate predictor can be trained on each resi-
due, which effectively reduces the dimensionality of the representation to dim{®(x)} = 53,121.

Computing the Kernel Matrix

Two observations can be made about the vectors of counts. First, most of the entries in ®(x) will be
zero due to the limited number of residues that can be placed in the volume of radius 3r (r being the
threshold distance in the construction of the contact graph) and the nature of grouping of amino
acids (e.g., a clique of four positively charged residues is rare). Second, it is likely that a number of
non-zero entries in each vector will have a zero as the corresponding entry in the other vector, and
thus these counts will not contribute to the inner product. The first observation allows us to speed-
up the computation of the inner product by using a sparse vector representation, i.e. using (key,
value) pairs, and either sort join or hash join to match the labeled orbit counts. In sort join, both
vectors are sorted based on keys, and then joined in time linear in the sum of sizes of the vectors. In
the hash join, a hash table is built based on the (key, value) pairs of one vector in linear time. The
other vector is read sequentially and used to probe the hash table, for an expected linear time,
which can degenerate to quadratic in the worst case. The second observation leads to even more
significant speed-ups in practice. If the pivot residue is invariant, in a graphlet of size up to four,
there are up to three amino acid labels for every graphlet (denoted as a, b, and c in Figure 2). Since
the ordering of labels has already been done during the label assignment step, we can construct a
trie of labels of depth 3, with counts of 01 orbits in vertices at depth 1, counts of 02, 03, and 04 orbits
at vertices of depth 2, and so on. In this scenario, merging allows skipping subtries for which the
prefix leading to the subtrie does not occur. The trie merge method could be combined with the
graphlet counting step, where it would eliminate combinations of vertices based on their labels. For
an overview of efficient strategies for string kernel computations, we direct the reader to an article
by Rieck and Laskov [48].

Classification

In the prediction step, the binary classification score of a query vertex q is computed as



score(q) = Z a; - d; - K(x;,q)
i

where x; is the ith support vector coming from the training set, d; € {+1, —1} is the class label of x;,
and ¢; is the ith Lagrange multiplier computed in the SVM learning step. This compact expression
suggests a way to efficiently compute the prediction score, since all support vectors can be stored in
a single data structure (hash table, trie or a suffix tree) where the weight for each labeled orbit
would correspond to a sum of coefficients «; - d; over all support vectors. The prediction score can
be mapped into a probability using an approach by Platt [49].

Performance Evaluation

A prototype implementation of the graphlet kernel was coded in C++, using SVM/ight [50] as the pre-
diction engine. It was compared against a sequence-based predictor and our implementation of the
FEATURE method [12,43].

Sequence-based predictor. The sequence-based predictor builds a model similar to DisPhos 1.3
[51], a state-of-the-art phosphorylation site predictor. Sequence attributes were constructed as
amino acid compositions and various physicochemical and predicted properties in concentric win-
dows of length up to 21 around a pivot residue. In addition, we used binary representation for each
position around the pivot up to +12 positions. A support vector machine with a linear kernel was
used as the learning model. We refer to the sequence-based predictor as SEQUENCE.

FEATURE predictor. We implemented a simplified version of the FEATURE method in which
amino acids were counted in a sphere of radius r or in radial intervals (r1, r2]. The counts of the 20
individual amino acids and 12 groups of amino acids were used in a vector encoding for each site,
while the counts of atoms were ignored. Amino acid were grouped according to their physicochem-
ical properties into aliphatic (4, V, L, I), hydroxyl-containing (S, T, Y), amide-containing (N, Q), sul-
fur-containing (C, M), acidic (D, E), basic (K, R, H), charged (D, E, R, K, H), aromatic (F, Y, W), polar
(R,N,D, G E, Q H,K,S, T, W, Y), hydrophobic (A, C, G, I, L, M, F, P, W, Y), hydrophilic (R, N, D, E, K, S,
T, V), and small (A, G, C, S). The following vector representations were constructed: (1) FEATURE —
based on the original radial intervals defined in [12,43]: (0, 1.875], (1.875, 3.75], (3.75, 5.625], and
(5.625, 7.5]A; (2) FEATUREs.12.18 — based on radial intervals (0, 6], (6, 12], and (12, 18]4, and (3) FEA-
TUREs - based on a single sphere of radius of 18A. FEATUREs.12-13 representation was chosen to mim-
ic our construction of the protein contact graph (with C,-C. distance of 64) and the level-3 neigh-
borhood considered by the graphlet kernel, while FEATURE:s was selected to quantify the difference
between the cases of one sphere of radius 18A and 3 radial intervals covering the same physical
space. After the encoding was performed, each predictor was trained using a linear kernel and the
default capacity parameter (C) in the SVM!ght package.

The two predictors were chosen in order to provide fair and useful comparisons between me-
thods, e.g. such that conclusions can be drawn regarding the performance increase from sequence-
based to structure-based models. Observe that FEATURE with only one shell of radius r is a special
case of the graphlet kernel in which the protein contact graph is constructed using threshold r and
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where only graphlet g1 is used. Thus, the comparisons between the graphlet kernel and FEATURE
can also provide information on the value of modeling interdependencies between residues within
one sphere or shell.

Cross-Validation. We employed leave-one-chain-out performance evaluation, in which one PDB
chain was held out at a time. A model was trained on the remaining chains and then tested on the
chain that was excluded during the training. This type of evaluation most closely resembles the rea-
listic scenario in which a user would provide one chain at a time for prediction. We estimated sen-
sitivity (sn), specificity (sp), precision (pr), and area under the ROC curve (AUC) for each set of pa-
rameters. Sensitivity is defined as the true positive rate, the specificity is defined as the true nega-
tive rate, while the precision is defined as the fraction of positively predicted residues that are cor-
rectly predicted. ROC curve plots sn as a function of (1 - sp) over all decision thresholds.

Experiments and Results

We conducted a comprehensive set of experiments with the goal of characterizing the performance
of the graphlet kernel with respect to the choice of parameters (size of alphabet and normalization
of the kernel function). The principal difference between the three methods is in how they model
the analyzed residue and its surroundings. To minimize the influence of other variables on the out-
come, all methods were trained using the same prediction engine (SVM!ght) and similarity measure
(i.e., the inner product of the vector representations). The two data sets, CSA and PHOS, were split
into subsets based on the analyzed amino acid. Thus, twenty distinct models were built for the CSA
data set and three models for PHOS.

Data Sets

CSA. We selected all catalytic residues from the Catalytic Site Atlas (CSA) v.2.2.9 [52] found in the
ASTRAL 40 v.1.73 structures [53], as positive examples. Catalytic activity in CSA has been assigned
either experimentally or via function transfer, using PSI-BLAST [54]. When different groups of resi-
dues were annotated based on function transfer from different proteins, we included the union of
residues from all groups. All remaining residues in the respective chains were considered to be
negative examples. For a detailed description of the data sets, see Tables 1-2.

TABLE 1

TABLE 2

PHoOSs. It has previously been shown that protein phosphorylation sites are preferentially located in
intrinsically disordered protein regions [51,55]. There are, however, examples where phosphoryla-
tion sites can also be found in ordered regions [51,56]. Furthermore, local or global conformational
changes between folded conformations as well as disorder-to-order or order-to-disorder transi-
tions could occur upon covalent attachment of the phosphate group to the side chain of a phospho-
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rylated residue [56,57,58,59], leading to mischaracterization of disordered regions. In order to in-
vestigate the structural properties of phosphorylation sites in greater detail, we searched PDB for
” "phosphothreonine,” or "phosphortyrosine,” and
which contain residue symbols Sep, Tpo, or Ptr in the HETATM lines. A non-redundant subset of
proteins (<40% sequence identity between any pair of chains) is reported in Table S1 (Suppl. Data).
We found a very limited number of annotated phosphorylation sites for which the structure has
been determined: 48 phosphoserines in 35 non-redundant PDB chains, 20 (19) phosphothreonines,
and 25 (20) phosphotyrosines.

records which contain keywords "phosphoserine,

The set of phosphorylation sites with solved structures was not large enough for systematic
evaluation of our method. In order to expand the data set, we aligned a comprehensive set of se-
quences with experimentally annotated phosphorylation sites against the set of ASTRAL sequences
using BLAST [54]. This set of sites was compiled from the proteins annotated in UniProt release
54.3 [60], Phospho.ELM [61], Phosida [62], dbPTM [63], and through a survey of the literature
[64,65,66,67,68] (see Table S2, Suppl. Data). We included only alignments longer than fifty consecu-
tive residues, with at least 90% sequence identity, with Sep/Tpo/Ptr correctly aligned against
Ser/Thr/Tyr, and without missing residues in the aligned segment. All other Ser/Thr/Tyr in the
returned protein structures were added to the dataset as negatives. Aligning against ASTRAL40 still
did not produce enough data points for training (291 S, 122 T, and 140 Y). Thus, we decided to map
the phosphosites from known sequences to ASTRAL95 (627 S, 237 T, and 293 Y), which provided a
compromise between data set redundancy and size. Compared to the number of phosphosites an-
notated within protein sequences, the fractions of these sites mapped onto ASTRAL40 (1.5% S,
2.7% T, 6.4% Y), ASTRALO95 (3.2% S, 5.1% T, 13.4% Y) or all structures in PDB (4.0% S, 6.8% T,
18.2% Y) were significantly smaller even though we allowed for inexact matches.

Construction of Protein Contact Graphs

There is no universally agreed upon convention about when two residues are in contact and should
be connected with an edge. A number of studies have looked at the distances between C, or Cg
atoms, with appropriately chosen thresholds (e.g., 8.5A [69], or in the 3-6A range [70]). An alterna-
tive is to look at distances between any two atoms and consider the residues to be in contact if the
distance is below 54 [71] or the sum of their van der Waals radii plus 0.54 [72]. Brinda et al. [73]
proposed to consider the strength of interaction between the amino acids, defined as the norma-
lized number of atom-atom pairs below a cutoff distance.

Pollastri et al. [74] analyzed protein coordination numbers, which correspond to degrees of ver-
tices in our framework. They performed experiments with distances between C, atoms with thre-
sholds set at 6, 8, 10, and 12A and reported high similarity between residues in contact for thre-
sholds =8 A. With the goal of understanding how these choices influence the resulting protein con-
tact graph, we extended their approach to four connection methods (distances between C, Cg, all
atom pairs, and all atom pairs taking into consideration their van der Waals radii) and a number of
appropriate thresholds. We generated graphs based on all chains in the October 2007 version of
PDBSelect25 [75]. The similarity between sets of edges was quantified using the Jaccard similarity
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coefficient, defined for two sets A and B as J(4, B) = |A n B|/|A U B|, as shown in Table S5 (Suppl.
Data).

The methods based on the distances between C, and Cg atoms are computationally more effi-
cient because they perform a quadratic number of distance calculations in the number of residues,
whereas atom level methods perform a quadratic number of computations in the number of atoms.
Methods operating at the atom level have potentially higher sensitivity to the underlying biochemi-
stry, in particular when the differences in the van der Waals radii are taken into consideration.
However, the van der Waals method is the only one which cannot avoid an expensive square root
operation. Based on our experiments Cq- and Cg-based methods display a relatively strong depen-
dency on the threshold parameter, which is indicated by the low Jaccard coefficients between sets
of edges (see Table S5, Suppl. Data). Atom level methods are generally in good agreement with each
other and are more robust to the choice of the threshold distance parameter. Also, they are in good
agreement with the C, and Cg methods for 6A threshold. These results have led us to choose the C,-
based method with 6A distance cut-off to build the protein contact graph, as a good compromise
between speed and sensitivity.

Parameter Selection

On the PHOS data set, the non-normalized graphlet kernel resulted in slightly better AUC values than
the normalized kernel, with 0.9, 2.6 and 0.1 percentage points advantage for Ser, Thr, and Tyr, re-
spectively (Figure 3). The best results were achieved using the full alphabet (|c4| = 20), and the re-
duction in alphabet size was strongly correlated with the decrease in AUC. On the CSA data, the
overall best classification model was the normalized graphlet kernel built using the full alphabet.
Here, the dependence on the alphabet size was less clear. In some cases AUC correlated with the
alphabet size (e.g. C, G). In other cases AUC was generally robust to the changes in alphabet size
(e.g. A, K), while in the remaining cases there was no clear trend (e.g. P, T). Interestingly, the unla-
beled graphlet kernels, i.e. when |A| = 1, were consistently inferior to the remaining models. Per-
haps not surprisingly, this suggests that in the analysis of protein structure graphs the connectivity
information alone, which in turn is correlated with surface accessibility, is not useful for classifica-
tion. We report all AUC values in the Figures S2-S24 and Tables S2-S3 (Suppl. Data).

FIGURE 3

To avoid overfitting we evaluated the performance of all methods on one amino acid subset at a
time, and the remaining amino acid subsets (19 for CSA and 2 for PHOS) were used to select the best
performing predictor. The selected alphabet size for the normalized kernel was 20 both for CSA
(best in 60% of the subsets) and PHOS (100%). For the non-normalized kernel, the selected alpha-
bet size was 15 on CSA (27.5%) and 20 on PHOS (100%). The best overall performing variant of
FEATURE was FEATUREe.12-18. The list of all results is provided in Tables S2-S3 and Figures S2-S24
(Suppl. Data). The reduced alphabets were created by hierarchical clustering of amino acids using
BLOSUMS50 scoring matrix as a measure of similarity (Figure S1, Suppl. Data).
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Performance of the Graphlet Kernel Model

The normalized and the non-normalized versions of the graphlet kernel generally performed better
than the alternative methods, both in terms of mean AUC values and the number of subsets on
which each method outperformed all others. On the CSA data set, the mean AUC values were
73.2+7.3% (SEQUENCE), 76.7+7.8% (FEATURE), 76.745.2% (non-normalized graphlet kernel) and
78.8£5.9% (normalized graphlet kernel). On the PHOS data set the mean AUC values were
74.8+1.8% (SEQUENCE), 65.2+2.0% (FEATURE), 77.643.1% (non-normalized graphlet kernel) and
76.414.4% (normalized graphlet kernel). Figure 3 shows a bar plot with the AUC values corres-
ponding to the CSA data set and Figure 4 illustrates the ROC curves for the PHOS data set. On the CSA
data set, the sequence-based predictor performed best on 15% of the subsets (I, L, P), FEATURE on
35% (A, D, E, S, T, K, V), the non-normalized graphlet kernel on 5% (F), and the normalized graphlet
kernel on 45% (R, N, C, Q, G, H, W, M, Y). On the PHOS data set, the sequence-based predictor
achieved the best performance for Thr, while the non-normalized graphlet kernel was the best
model on Ser and Tyr.

FIGURE 4

Though ROC curves are a useful way of comparing classification models, it can be observed in Fig-
ure 4 that the steepest slope of the ROC curve was consistently observed for the graphlet kernel.
The lower left part of the ROC curve corresponds to the predictions with the highest scores. Thus,
we evaluated the sensitivity of these predictors for a given precision of 95% (i.e. false discovery
rate of 5%). On the PHOS-SER data set, the recall for the SEQUENCE, FEATURE and graphlet kernel me-
thods were 19.6%, 11.2%, 42.7% (non-normalized), and 43.8% (normalized), respectively. In the
case of PHOS-THR data set these values were 20.5%, 11.6%, 37.8%, and 41.7%, while in the case of
PHOS-TYR data set the sensitivities at 5% false discovery rate were 23.9%, 17.4%, 48.4%, and
49.9%, respectively.

[t is worth noting that the performance of the graphlet kernel was consistently good on both classes
of problems. FEATURE performed well on the CSA data, but its accuracy dropped on the PHOS data.
On the other hand, the sequence-based predictor performed well on PHOS, but less well on the CSA
data set. Although experimental testing of our method was far from exhaustive, the results pre-
sented here suggest that the graphlet count methodology might be more general than the other me-
thods evaluated in this study. As an illustration of the graphlet patterns centered on a phosphoryla-
tion site, we show a 3D structure of the human lymphocyte kinase Lck with highlighted phsophosite
Tyr394 (Figure 5A) along with its level-3 neighborhood in the protein contact graph (Figure 5B).

FIGURE 5

Structure of Ordered Protein Phosphorylation Sites

It was previously proposed that phosphorylation sites preferentially, although not exclusively, ap-
pear in intrinsically disordered protein regions [51]. A recent mass spectrometry study of 162 cyto-
solic phosphoproteins provided an experimental confirmation: out of 512 phosphorylation sites,
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97% occurred outside of structured domains, and 86% occurred in regions of protein disorder [55].
Nonetheless, there are examples of ordered phosphorylation sites [56,76,77,78] and several struc-
tures containing phosphorylated sites have been deposited in PDB (see Data Sets section). In addi-
tion, several studies addressed conformational changes in proteins following the addition of the
phosphate group (e.g. [57,79,80]). In the supplementary material (Table S1) we report a non-
redundant subset of phosphorylated sites mined from PDB and results of the search for the struc-
tures of proteins that can be found both in the phosphorylated and the unphosphorylated states.
The search returned 34 structures with 49 previously phosphorylated residues. Interestingly, in
most cases the structural change between the two proteins was minimal, suggesting that in these
cases phosphorylation may not be affecting protein function via an allosteric effect, but rather via
introducing a binding site. We also analyzed secondary structure of the annotated phospho-
residues in PDB using DSSP [81], and found that 73.3% of the sites were located in loops and turns
(Table 3), which is consistent with the fact that phosphorylation sites tend to be located in flexible
regions in order to fit into the kinase recognition pocket.

TABLE 3

Another interesting observation is the prevalence of kinases in the ordered subset of phosphosites
from PDB (Table S1). For example, the majority (14 out of 25) of threonine phosphorylation sites
(and to a lesser degree of those of serine and tyrosine sites) were found in kinases, which may sug-
gest that ordered phosphosites preferentially occur in kinases and might be important for their
regulation or for regulation of the phosphorylation process catalyzed by the kinases. Currently,
there are only 112 kinases in PDB (with <90% pairwise sequence identity), thus an alternative ex-
planation that structures of kinases are more frequently studied and hence overrepresented in PDB
seems unlikely. Additionally, we observed that the majority of ordered tyrosine phosphorylation
sites in kinases (9 out of 14) are in fact autophosphorylation sites.

In summary, we conclude that (1) protein phosphorylation sites are indeed preferentially located in
disordered regions because only a very small subset of them could be found in PDB; (2) ordered
phosphorylation sites are preferentially located in protein loops thereby potentially facilitating the
access of kinases to the phosphorylatable residue; (3) for the cases of ordered phosphorylation
sites currently present in PDB there are minimal structural changes that occur upon phosphoryla-
tion with only a few examples of order-to-disorder transitions; (4) ordered phosphorylation sites,
especially for threonine, are enriched among kinases; and (5) ordered tyrosine phosphorylation
sites are frequently found to be autophosphorylation sites.

Discussion

In this study we propose and evaluate a computational method for predicting functional residues in
protein structures. The method is based on a graph representation of protein structure and a ker-
nel-based strategy for probabilistic binary labeling of vertices. In the broader context of machine
learning, our graphlet kernel belongs to the graph classification methods because our implementa-
tion considers vertex neighborhoods up to a fixed level and these neighborhoods can be treated as
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isolated graphs. In this framework we are given a set G = {(G,y)}}, where G is an undirected la-
beled graph, y € {+1, —1} is the class label of G, and the objective is to develop a classifier. Several
kernel methods have been recently developed for this problem, e.g. a random-walk kernel [82], a
cycle pattern kernel [83], weighted decomposition kernel [84] and others [45,85]. However, in the
vertex labeling problem considered in this study, each graph G also contains a special node called
pivot and our method exploits its presence effectively.

The graphlet kernel was applied to the problem of residue-level function prediction from pro-
tein structure. In the world of microenvironment-based and template-based approaches developed
for the prediction of protein functional sites, our method appears to be the most similar to the FEA-
TURE framework [12,43,86]. FEATURE works at the atomic level and the residue level simulta-
neously and also exploits various physicochemical properties of amino acids. As mentioned pre-
viously, its residue level component can be seen as a special case of the graphlet kernel, where only
graphlets of type g1 are used and where the distance thresholds for the construction of protein
structure graphs are varied. It would be relatively straightforward to extend the graphlet kernel to
incorporate multiple distance thresholds as well as the atom-level component, e.g. via a fusion ker-
nel [87,88] or the hyper-kernel approach [34], but such an extension is beyond the scope of this
study.

It is worth mentioning that the graphlet kernel framework is also related to the spectrum ker-
nel [89,90,91]. The spectrum kernel is a strategy for classifying proteins based on the counts of k-
mers in their primary structure. If one was to construct a protein structure graph such that only
vertices corresponding the neighboring residues in protein sequence are connected by edges, the
graphlet representation would effectively count strings, thus resembling the spectrum kernel strat-
egy. In addition, the computation of the graphlet kernel function is similar to an efficient algorithm
proposed by Leslie et al. [89] which was later further formalized and systematically evaluated by
Rieck and Laskov [48].

We chose to evaluate our method against a sequence-based predictor, the original FEATURE al-
gorithm (though counts of atoms were ignored in our implementation), and two commonsense var-
iations thereof. All predictors were systematically evaluated on a classical problem of the catalytic
residue prediction and also on a less explored problem of prediction of phosphorylation sites from
protein structure. Blom et al. [92] were the first to develop a phosphorylation site predictor from
the predicted contact maps given a protein sequence; however, its accuracy was inferior to their
sequence-based model. We believe that this was due to the fact that protein contact maps cannot be
precisely inferred from sequence data alone compared to the fragment assembly approaches [93].
In addition, many phosphorylation sites lie in the disordered regions for which a time-invariant
contact map may not even exist [51]. Thus, the model by Blom et al,, as well as many others
[51,67,94,95,96,97], was developed from amino acid sequence or aligned sequences. Here we pro-
vide evidence that the knowledge of protein 3D structure is beneficial for the prediction of ordered
phosphorylation sites. We also demonstrate that the graphlet kernel fared favorably against the al-
ternative strategies. While our model was constructed from proteins deposited in PDB, it is
straightforward to extend it to structural models which can be constructed with increasing accura-
cy [98].

In previous work, it was hypothesized that phosphorylation sites preferentially occur in intrin-
sically disordered regions [51]. This hypothesis has been validated in recent experimental studies
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[55,99] and in several cases disorder-to-order transition upon phosphorylation has been predicted
[58,100,101]. Furthermore, it has recently been shown that disordered proteins are substrates of
twice as many kinases as are ordered proteins [99]. However, for a subset of phosphorylatable re-
sidues that are structured under physiological conditions, current study strongly suggests that not
only the average structural and physicochemical properties are important, but also the particular
interconnectedness of the residues within the microenvironments also considered by FEATURE. In
addition, the consistently inferior performance of the unlabeled graphlet kernel (|cA| = 1) suggests
that in the analysis of protein structure graphs, unlike protein-protein interaction networks, the
connectivity information alone is not sufficient to generate useful classification models.
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Figure Captions

Figure 1: Nine types of 2-, 3- and 4-graphlets and the corresponding 15 automorphism orbits.
Graphlet go and orbit oo represent a single vertex in a graph and are not shown.

Figure 2: Schematic of the orbit counting algorithm: case 01, orbit 01; case 011, orbits 03 and o04; case
012, orbit 0z; case 0111, orbits 0s, 010, 014, and o1s; case 0112, orbits o0s, 011, 012, and o013; case 0122,
orbits 07 and o09; and case 0123, orbit os.

Figure 3: Area under the ROC curve (AUC) for the CSA data sets. Method compared: S - SEQUENCE, F -
FEATUREq.12.18, G - graphlet kernel with full alphabet, GN - normalized graphlet kernel with full
alphabet. Bold bars indicate the method with the best performance on an individual data set.

Figure 4: ROC plots for the PHOS data sets. Red curve - FEATURE.12-1, black curve - SEQUENCE, green
curve - graphlet kernel with full alphabet, blue curve - normalized graphlet kernel with full
alphabet.

Figure 5: Structure of human lymphocyte kinase Lck with highlighted phosphorylation site Tyr394
(A) and the corresponding level-3 protein contact graph centered at Tyr394 (B).



Table 1: Summary of the CSA data set.

Tables

Residue Sites Chains Non-sites NS/S Ratio Total
Ala 110 102 3,310 30.09 3,420
Arg 618 493 9,119 14.76 9,737
Asn 329 310 4,685 14.24 5,014
Asp 1,116 836 16,710 14.97 17,826
Cys 292 222 950 3.25 1,242
Gln 135 129 1,532 11.35 1,667
Glu 740 626 14,422 19.49 15,162
Gly 347 238 5,909 17.03 6,256
His 934 712 5,801 6.21 6,735
Ile 48 46 705 14.69 753
Leu 65 62 1,580 24.31 1,645
Lys 634 531 10,005 15.78 10,639
Met 27 27 226 8.37 253
Phe 128 105 1,408 11.00 1,536
Pro 36 36 554 15.39 590
Ser 468 366 7,506 16.04 7,974
Thr 248 212 3,779 15.24 4,027
Trp 92 76 634 6.89 726
Tyr 426 373 4,824 11.32 5,250
Val 37 37 974 26.32 1,011
Total 6,830 2,025 94,633 13.86 101,463



Table 2: Summary of the PHOS data set.

Residue Sites Chains Non-sites NS/S Ratio Total
Ser 627 427 5,068 8.08 5,695
Thr 237 206 2,124 8.96 2,361
Tyr 293 235 1,526 5.21 1,819
Total 1,157 686 8,718 7.54 9,875



Table 3: Secondary structure assignments of the phosphorylation sites found in PDB: number of
sites and percentage.

Helix Sheet Loop Turn
Serine 13 (28.9%) 3(0.7%) 17 (37.8%) 12 (26.7%)
Threonine 2 (10%) 0 18 (90%) 0
Tyrosine 0 6 (24%) 11 (44%) 8 (32%)

Total 15 (16.7%) 9 (10%) 46 (51.1%) 20 (22.2%)
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Figure 3

AUC AUC
50 60 70 80 90 50 60 70 80 90
s [ 172.3 S 674
A F 80.0 R F 172.3
G 1713 G 173.8
GN 174.5 GN — 76.2
s 177.7 S I 174.6
N F 182.6 D F — 83.7
G ]81.1 G 179.0
GN I, 544 GN 182.7
s 179.2 s 173.1
C F 181.0 Q F 171.3
G ] 86.0 G ]69.5
GN 86.9 GN I 7 7.3
s [ 173.3 s 180.7
E F 832 G F ]84.1
G 181.0 G ]84.0
B - B : b
s 171.3 s 83.4
F ]78.1 F 170.6
H G 176.8 I G 177.7
B =8.5 B i
s 79.3 s 178.7
L F 175.0 K F N 05.2
G 177.6 G ]81.2
GN 173.7 GN 180.9
s [O514 s 168.7
M F 1576 F F 172.2
G 172.0 G I 5.1
GN 80.9 GN 170.1
s 709 s 1812
P FEC—1634 S F N, 85.3
G ]67.1 G ] 84.1
GN 170.8 GN 87.7
s 173.9 s 1715
F N, O 3.6 F 173.2
T G 1716 W G 1716
GN ]80.2 GN 74.0
s 761 s 627
Y F 75.9 V F 72.2
G ] 75.1 G I 1716
GN 76.9 GN [ 167.8




Figure 4

sensitivity

Sequence (72.8%)
Feature (64.0%)
Graphlet (77.7%)

Graphlet Norm (76.8%) ——

. Hand‘om (50.0%)

0.4 0.6 08
1 - specificity

sensitivity

Sequence (76.4%) -
Feature (64.0%) -
Graphlet (74.5%)

Graphlet Norm (71.9%) ——
Random (50.0%) -

0.4 0.6 0.8
1 - specificity

sensitivity

Sequence (75.3%) -~
Feature (67.5%) -
Graphlet (80.7%)
Graphlet Norm (80.6%) ——
Random (50.0%)

0.2 0.4 0.6 08
1 - specificity




Figure 5




	GraphletKernel_NatPreceedings
	FigureCaptions
	Tables
	Figures

